

Mathematics

Advanced GCE A2 7890 - 2

Advanced Subsidiary GCE AS 3890 – 2

Mark Schemes for the Units

June 2009

3890-2/7890-2/MS/R/09

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, GCSEs, OCR Nationals, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2009

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

CONTENTS

Advanced GCE Mathematics (7890) Advanced GCE Pure Mathematics (7891) Advanced GCE Further Mathematics (7892)

Advanced Subsidiary GCE Mathematics (3890) Advanced Subsidiary GCE Pure Mathematics (3891) Advanced Subsidiary GCE Further Mathematics (3892)

MARK SCHEMES FOR THE UNITS

Unit/Content	Page
4721 Core Mathematics 1	1
4722 Core Mathematics 2	5
4723 Core Mathematics 3	8
4724 Core Mathematics 4	12
4725 Further Pure Mathematics 1	17
4726 Further Pure Mathematics 2	20
4727 Further Pure Mathematics 3	24
4728 Mechanics 1	30
4729 Mechanics 2	33
4730 Mechanics 3	35
4731 Mechanics 4	39
4732 Probability & Statistics 1	45
4733 Probability & Statistics 2	50
4734 Probability & Statistics 3	54
4735 Probability & Statistics 4	57
4736 Decision Mathematics 1	60
4737 Decision Mathematics 2	64
Grade Thresholds	69

WWWW. MY MAN MANNE June 20. Painscioud.com

4721 Core Mathematics 1

1	(i)	$\frac{dy}{dy} = 5r^4 = 2r^{-3}$	B1	$5x^4$
		$\frac{dx}{dx} = \frac{3x}{2x}$	M1	x^{-2} before differentiation or kx^{-3} in $\frac{dy}{dt}$ soi
			A1 3	$-2x^{-3}$ dx
	(**)		MI	
	(11)	$\frac{d^2 y}{d^2 y} = 20x^3 + 6x^{-4}$		Attempt to differentiate their (1) – at least one term correct
		$\mathrm{d}x^2$	A1 2 5	cao
2		$(8+\sqrt{7})(2-\sqrt{7})$		
		$\overline{(2+\sqrt{7})(2-\sqrt{7})}$	M1	Multiply numerator and denominator by conjugate
		$=\frac{9-6\sqrt{7}}{4-7}$	A1	Numerator correct and simplified
		4 = 7 = $-3 + 2\sqrt{7}$	A1 4	
			4	
3	(i)	3 ⁻²	B1 1	
	(ii)	$3^{\frac{1}{3}}$	B1 1	
	(iii)	$3^{10} \times 3^{30}$	M1	3^{30} or 9^{20} soi
		$=3^{40}$	A1 2 4	
4		y = 2x - 4		
		$4x^2 + (2x - 4)^2 = 10$	M1*	Attempt to get an equation in 1 variable only
		$8x^2 - 16x + 16 = 10$		
		$8x^2 - 16x + 6 = 0$	A1	Obtain correct 3 term quadratic (aef)
		$4x^2 - 8x + 3 = 0$		
		(2x-1)(2x-3) = 0	M1dep*	Correct method to solve quadratic of form $ax^2 + bx + c = 0$ ($b \neq 0$) Correct factorisation oe
		$x = \frac{1}{2}$, $x = \frac{3}{2}$	A1	Both x values correct
		y = -3, y = -1	A1 A1 6	Both y values correct
				<u>or</u>
			6	second correct pair of values www B1 B1 B1

				mm	4
472	21	Mar	k Schem	e June 20. Tag	Maths
5	(i)	(2x2 - 5x - 3)(x + 4) = 2x ³ + 8x ² - 5x ² - 20x - 3x - 12	M1	Attempt to multiply a quadratic by a linear factor or to expand all 3 brackets with an appropriate number of terms (including an x^3 term)	cloud.com
		$= 2x^3 + 3x^2 - 23x - 12$	A1 A1 3	Expansion with no more than one incorrect term	
	(ii)	$2x^4 + 7x^4$ $= 9x^4$	B1 B1 2	$2x^4$ or $7x^4$ soi www	
		9	5	$9x^4$ or 9	
6	(i)		B1 B1 2	One to one graph <u>only</u> in bottom right hand quadrant Correct graph, passing through origin	
	(ii)	Translation Parallel to <i>y</i> -axis, 5 units	B1 B1 2		
	(iii)	$y = -\sqrt{\frac{x}{2}}$	M1	$\sqrt{2x}$ or $\sqrt{\frac{x}{2}}$ seen	
			A1 2 6	cao	
7	(i)	$\left(x-\frac{5}{2}\right)^2 - \left(\frac{5}{2}\right)^2 + \frac{1}{4}$	B1	$a = \frac{5}{2}$	
		$=\left(x-\frac{5}{2}\right)^2-6$	M1	$\frac{1}{4} - a^2$	
	(ii)	$\left(x - \frac{5}{2}\right)^2 - 6 + y^2 = 0$	AI J	cao	
		Centre $\left(\frac{5}{2},0\right)$	B1 B1	Correct <i>x</i> coordinate Correct <i>y</i> coordinate	
		Radius = $\sqrt{6}$	B1 3 6		

					www.m	12
472	21	Mar	'k Scł	neme	June 20. Ja	Maths P
8	(i)	-42 < 6x < -6 -7 < x < -1	M1 A1 A1	3	2 equations or inequalities both dealing with all 3 terms -7 and -1 seen oe -7 < x < -1 (or $x > -7$ and $x < -1$)	-CIOUD.COM
	(ii)	$x^{2} > 16$ x > 4 or $x < -4$	B1 B1 B1	3 6	± 4 oe seen x > 4 x < -4 not wrapped, not 'and'	
9	(i)	$\sqrt{(-1-4)^2 + (93)^2}$ =13	M1 A1	2	Correct method to find line length using Pythagoras' theorem cao	
	(ii)	$\left(\frac{4+1}{2}, \frac{-3+9}{2}\right)$ $\left(\frac{3}{2}, 3\right)$	M1 A1	2	Correct method to find midpoint	
	(iii)	(2^{\prime}) Gradient of $AB = -\frac{12}{5}$	B1			
		$y - 3 = -\frac{12}{5}(x - 1)$ 12x + 5y - 27 = 0	M1 A1	4	Correct equation for line, any gradient, through $(1, 3)$ Correct equation in any form with gradient simplified	
10	(i)	(3x+7)(3x-1) = 0 7 1	M1 A1	8	12x + 5y - 27 = 0 Correct method to find roots Correct factorisation oe	
	(ii)	$x = -\frac{1}{3}, x = \frac{1}{3}$ $\frac{dy}{dx} = 18x + 18$	A1 M1 M1	3	Correct roots Attempt to differentiate y Uses $\frac{dy}{dy} = 0$	
		18x + 18 = 0 x = -1 y = -16	A1 A1 f	řt 4	$\frac{dx}{dx} = 0$	
	(iii)	у -7- -7- -7- -7-	B1 B1 B1	3	Positive quadratic curve y intercept (0, -7) Good graph, with correct roots indicated and minimum point in correct quadrant	
	(iv)	x > -1	B1	1 11		

4721	Mar	rk Scheme	June 20. Jac	ML ASIIS
11 (i)	Gradient of normal = $-\frac{2}{3}$ $\frac{dy}{dx} = \frac{1}{2}kx^{\frac{1}{2}}$	B1 M1* A1	Attempt to differentiate equation of curve $\frac{1}{2}kx^{-\frac{1}{2}}$	Cloud.com
	When $x = 4$, $\frac{dy}{dx} = \frac{k}{4}$ $\therefore \frac{k}{4} = \frac{3}{2}$ k = 6	M1dep* M1dep* A1 6	Attempt to substitute $x = 4$ into their $\frac{dy}{dx}$ soi Equate their gradient expression to negative reciprocal of their gradient of normal cao	
(ii)	P is point (4, 12) Q is point (22, 0) Area of triangle = $\frac{1}{2} \times 12 \times 22$ = 132 sq. units	B1 ft M1 A1 M1 A1 5 11	Correct method to find coordinates of Q Correct x coordinate Must use y coordinate of P and x coordinate of Q	

M1

A1

A1

6

A1dep*

A1

M2

A1

A1

M1

A1√

A1

B1

8

4

5

2 Obtain 20.3 (cao)

2 Obtain 2750

at least 3 terms

4722 Core Mathematics 2 $\cos \theta = \frac{-6.4^2 + 7.0^2 - 11.3^2}{2 \times 6.4 \times 7.0}$ 1 (i) M1 Attempt use of cosine rule (any angle) Obtain one of 115°, 34.2°, 30.9°, 2.01, 0.597, 0.539 = -0.4211A1 $\theta = 115^{\circ} \text{ or } 2.01 \text{ rads}$ A1 **3** Obtain 115° or 2.01 rads, or better

- (ii) area = $\frac{1}{2} \times 7 \times 6.4 \times \sin 115$ $= 20.3 \text{ cm}^2$
- 2 (i) a+9d=2(a+3d)Attempt use of a + (n-1)d or a + nd at least once for u_4 , M1* u_{10} or u_{20} a = 3dA1 Obtain a = 3d (or unsimplified equiv) and a + 19d = 44 $a + 19d = 44 \Rightarrow 22d = 44$ M1dep* Attempt to eliminate one variable from two simultaneous equations in a and d, from u_4 , u_{10} , u_{20} and no others d = 2, a = 6A1 4 Obtain d = 2, a = 6(ii) $S_{50} = \frac{50}{2} (2x6 + 49x2)$ M1 Attempt S_{50} of AP, using correct formula, with n = 50, allow 25(2a + 24d)
 - = 2750
- 3 $\log 7^x = \log 2^{x+1}$ M1 Introduce logarithms throughout, or equiv with base 7 or 2 $x\log 7 = (x+1)\log 2$ M1 Drop power on at least one side A1 Obtain correct linear equation (allow with no brackets) $x(\log 7 - \log 2) = \log 2$ M1 Either expand bracket and attempt to gather x terms, or deal correctly with algebraic fraction x = 0.553A1 5 Obtain x = 0.55, or rounding to this, with no errors seen 5
- 4 (i) $(x^2-5)^3 = (x^2)^3 + 3(x^2)^2(-5) + 3(x^2)(-5)^2 + (-5)^3$ M1* $= x^{6} - 15x^{4} + 75x^{2} - 125$ M1*
- $(x^{2}-5)^{3} = (x^{2}-5)(x^{4}-10x^{2}+25)$ $= x^{6}-15x^{4}+75x^{2}-125$

(ii)
$$\int (x^2 - 5)^3 dx = \frac{1}{7}x^7 - 3x^5 + 25x^3 - 125x + c$$

WWW. MY MANNESS June 20. Nathscioud.com

Attempt triangle area using $(\frac{1}{2})absinC$, or equiv

Attempt expansion, with product of powers of x^2 and ± 5 ,

Obtain at least two correct terms, allow unsimplified coeffs

Use at least 3 of binomial coeffs of 1, 3, 3, 1

Attempt full expansion of all 3 brackets

Attempt integration of terms of form kx^n

Obtain at least two correct terms Obtain full correct expansion

Obtain $\frac{1}{7}x^7 - 3x^5 + 25x^3 - 125x$

4 + c, and no dx or \int sign

Obtain at least two correct terms, coeffs simplified

Obtain fully correct expansion, coeffs simplified

				www.n. M.
4722	I	Mark Sch	em	e June 20 June 20 June 20
5 (i)	$2x = 30^{\circ}, 150^{\circ}$ $x = 15^{\circ}, 75^{\circ}$	M1 A1		Attempt sin ⁻¹ 0.5, then divide or multiply by 2 Obtain 15° (allow $\pi/_{12}$ or 0.262)
		A1	3	Obtain 75° (not radians), and no extra solutions in range
(ii)	$2(1-\cos^2 x) = 2 - \sqrt{3}\cos x$	M1		Use $\sin^2 x = 1 - \cos^2 x$
	$2\cos^2 x - \sqrt{3}\cos x = 0$	A1		Obtain $2\cos^2 x - \sqrt{3}\cos x = 0$ or equiv (no constant terms)
	$\cos x \left(2\cos x - \sqrt{3}\right) = 0$	M1		Attempt to solve quadratic in cosx
range	$\cos x = 0, \ \cos x = \frac{1}{2}\sqrt{3}$	A1		Obtain 30° (allow $\pi/_6$ or 0524), and no extra solns in
runge	$x = 90^{\circ}, x = 30^{\circ}$	B1	5	Obtain 90° (allow $\pi/_2$ or 1.57), from correct quadratic only
			SR	answer only B1 one correct solution B1 second correct solution, and no others
			8	
6 [($3x^2 + a) dx = x^3 + ax + c$	M1		Attempt to integrate
5	,	A1		Obtain at least one correct term, allow unsimplified
		A1		Obtain $x^3 + ax$
(-	$(1, 2) \Rightarrow -1 - a + c = 2$	M1		Substitute at least one of $(-1, 2)$ or $(2, 17)$ into integration
(2	17)	A 1		attempt involving a and c
(2,	$1/) \Longrightarrow 8 + 2a + c = 1/$	AI M1		Attempt to eliminate one variable from two equations in <i>a</i>
				and c
<i>a</i> =	2, <i>c</i> = 5	A1		Obtain $a = 2, c = 5$, from correct equations
He	nce $y = x^3 + 2x + 5$	A1	8	State $y = x^3 + 2x + 5$
			8	
7 (i)	f(-2) = -16 + 36 - 22 - 8	M1		Attempt f(-2), or equiv
	=-10	A1	2	Obtain -10
(ii)	$f(\frac{1}{2}) = \frac{1}{4} + \frac{21}{4} + \frac{51}{2} - 8 = 0$ AG	M1		Attempt $f(\frac{1}{2})$ (no other method allowed)
		A1	2	Confirm $f(\frac{1}{2}) = 0$, extra line of working required
(iii)) $f(x) = (2x - 1)(x^2 + 5x + 8)$	M1		Attempt complete division by $(2x - 1)$ or $(x - \frac{1}{2})$ or equiv
	. ,	A1		Obtain $x^2 + 5x + c$ or $2x^2 + 10x + c$
		A1	3	State $(2x-1)(x^2 + 5x + 8)$ or $(x - \frac{1}{2})(2x^2 + 10x + 16)$
(iv)	f(x) has one real root ($x = \frac{1}{2}$) because $b^2 - 4ac = 25 - 32 = -7$	B1		State 1 root, following their quotient, ignore reason
	hence quadratic has no real roots as $-7 < 0$	0, B1√	2	Correct calculation, eg discriminant or quadratic formula, following their quotient, or cubic has max at (-2.15, -9.9)
			9	

		www. market
4722	Mark Schen	ne June 20 June 20
8 (i) $\frac{1}{2} \times r^2 \times 1.2 = 60$ r = 10 $r\theta = 10 \times 1.2 = 12$	M1 A1 B1√	Attempt $\binom{1}{2} r^2 \theta = 60$ Obtain $r = 10$ State or imply arc length is 1.2r, following their r
perimeter = $10 + 10 + 12 = 32$ cm	Al	4 Obtain 32
(ii)(a) $u_5 = 60 \times 0.6^4$ = 7.78	M1 A1	Attempt u_5 using ar^4 , or list terms 2 Obtain 7.78, or better
(b) $S_{10} = \frac{60(1-0.6^{10})}{1-0.6}$	M1	Attempt use of correct sum formula for a GP, or sum terms
= 149	A1	2 Obtain 149, or better (allow 149.0 – 149.2 inclusive)
(c) common ratio is less than 1, so series is convergent and hence sum to infinity exists	B1	series is convergent or $-1 < r < 1$ (allow $r < 1$) or reference to areas getting smaller / adding on less each time
$S_{\infty} = \frac{60}{1-0.6}$	M1	Attempt S_{∞} using \underline{a}_{1}
= 150	A1 .	3 Obtain $S_{\infty} = 150$
		SR B1 only for 150 with no method shown
	11]
9 (i) ↑ /	B1	Sketch graph showing exponential growth
	B1 2	2 State or imply (0, 4)
(ii) $4k^x = 20k^2$		
$k^{x} = 5k^{2}$	M1	Equate $4k^{k}$ to $20k^{2}$ and take logs (any, or no, base)
$x = \log_k 5k$ $x = \log_k 5 + \log_k k^2$	M1	Use $\log ab = \log a + \log b$
$x = 2\log_k k + \log_k 5$	M1	Use $\log a^b = b \log a$
$x = 2 + \log_k 5 \qquad \text{AG}$	Al	4 Show given answer correctly
$OR 4k^x = 20k^2$ $k^x = 5k^2$	M1	Attempt to rewrite as single index
$k^{x-2} = 5$	Al	Obtain $k^{x-2} = 5$ or equive g $4k^{x-2} = 20$
$x - 2 = \log_k 5$	M1	Take logs (to any base)
$x = 2 + \log_k 5 \qquad \text{AG}$	Al	Show given answer correctly
(iii) (a) area $\approx \frac{1}{2} \times \frac{1}{2} \times \left(4k^0 + 8k^{\frac{1}{2}} + 4k^1\right)$	M1	Attempt <i>y</i> -values at $x = 0$, $\frac{1}{2}$ and 1, and no others
× /	M1	Attempt to use correct trapezium rule, 3 y-values, $h = \frac{1}{2}$
$\approx 1+2k^{\frac{1}{2}}+k$	A1 3	3 Obtain a correct expression, allow unsimplified
(b) $1+2k^{\frac{1}{2}}+k=16$	M1	Equate attempt at area to 16
$\left(k^{\frac{1}{2}}+1\right)^2 = 16$	M1	Attempt to solve 'disguised' 3 term quadratic
$k^{\frac{1}{2}} - 3$		
k = 9	A1	3 Obtain $k = 9$ only
	12	3

4723 Core Mathematics 3

1 (i)	State $y = \sec x$	B1		
(ii)	State $y = \cot x$	B1		
(iii)	State $y = \sin^{-1} x$	B1	3	
			3	
2	<u>Either</u> : State or imply $\int \pi (2x-3)^4 dx$	B1		or unsimplified equiv
	Obtain integral of form $k(2x-3)^5$	M1		any constant k involving π or not
	Obtain $\frac{1}{10}(2x-3)^5$ or $\frac{1}{10}\pi(2x-3)^5$	A1		
	Attempt evaluation using 0 and $\frac{3}{2}$	M1		subtraction correct way round
	Obtain $\frac{243}{10}\pi$	A1	5	or exact equiv
	Or: State or imply $\int \pi (2x - 3)^4 dx$	D1		or unsimplified equiv
	<u>OI</u> . State of imply $\int n(2x-5) dx$			of unsimplified equiv
	Expand and obtain integral of order 5 Ob'n $\frac{16}{5}$ $24x^4 + 72x^3 = 108x^2 + 81x$			with at least three terms correct with or without π
	$\frac{1}{5}x - 24x + 72x - 106x + 81x}{100x + 81x}$	AI		with of without <i>n</i>
	Attempt evaluation using (0 and) $\frac{5}{2}$	MI		
	Obtain $\frac{243}{10}\pi$	A1	(5)	or exact equiv
			5	
3 (i)	Attempt use of identity for $\sec^2 \alpha$	M1		using $\pm \tan^2 \alpha \pm 1$
	Obtain $1 + (m+2)^2 - (1+m^2)$	A1		absent brackets implied by subsequent
				correct working
	Obtain $4m + 4 = 16$ and hence $m = 3$	A1	3	
(ii)	Attempt subn in identity for $tan(\alpha + \beta)$	M1		using $\frac{\pm \tan \alpha \pm \tan \beta}{1 \pm \tan \alpha \tan \beta}$
	Obtain $\frac{5+3}{1-15}$ or $\frac{m+2+m}{1-m(m+2)}$	Alv	V	following their <i>m</i>
	Obtain $-\frac{4}{7}$	A1	3	or exact equiv
			6	
4 (i)	Obtain $\frac{1}{3}e^{3x} + e^{x}$	B1		
	Substitute to obtain $\frac{1}{2}e^{9a} + e^{3a} - \frac{1}{2}e^{3a} - e^{a}$	B1		or equiv
	Equate definite integral to 100 and			1
	attempt rearrangement	M1		as far as $e^{9a} = \dots$
	Introduce natural logarithm	M1		using correct process
	Obtain $a = \frac{1}{9} \ln(300 + 3e^a - 2e^{3a})$	A1	5	AG; necessary detail needed
(ii)	Obtain correct first iterate	B1		allow for 4 dp rounded or truncated
	Show correct iteration process	M1		with at least one more step
	Obtain at least three correct iterates in all Obtain 0.6309	AI A1	4	following at least three correct steps:
			•	answer required to exactly 4 dp
	$[0.6 \rightarrow 0.631269 \rightarrow 0.630]$	884	$\rightarrow 0$.630889]
			9	

June 20.	My Asens
0	OUD COM

5 (i)	<u>Either</u> : Show correct process for comp'n Obtain $y = 3(3x + 7) - 2$	M1 A1		correct way round and in terms of <i>x</i> or equiv
	Obtain $x = -\frac{19}{9}$	A1	3	or exact equiv; condone absence of $y = 0$
	<u>Or</u> : Use $fg(x) = 0$ to obtain $g(x) = \frac{2}{3}$	B1		
	Attempt solution of $g(x) = \frac{2}{3}$	M1		
	Obtain $x = -\frac{19}{9}$	A1	(3)	or exact equiv; condone absence of $y = 0$
(ii)	Attempt formation of one of the equations			
	$3x+7 = \frac{x-7}{3}$ or $3x+7 = x$ or $\frac{x-7}{3} = x$	M1		or equiv
	Obtain $x = -\frac{7}{2}$	A1		or equiv
	Obtain $y = -\frac{7}{2}$	Alv	3	or equiv; following their value of x
(iii)	Attempt solution of modulus equation	M1		squaring both sides to obtain 3-term quadratics or forming linear equation with signs of $3x$ different on each side
	3x - 2 = -3x - 7	A 1		or equiv
	Obtain $x = -\frac{5}{6}$	A1		or exact equiv; as final answer
	Obtain $y = \frac{9}{2}$	A1	4	or equiv; and no other pair of answers
	· 2		10	
6 (i)	Obtain derivative $k(37+10y-2y^2)^{-\frac{1}{2}}f(y)$	M1		any constant k; any linear function for f
	Obtain $\frac{1}{2}(10-4y)(37+10y-2y^2)^{-\frac{1}{2}}$	A1	2	or equiv
(ii)	<u>Either</u> : Sub'te $y = 3$ in expression for $\frac{dx}{dy}$	*M1		
	Take reciprocal of expression/value	*M1		and without change of sign
	Attempt equation of tangent	AI M1		den *M *M
	Obtain $y = -7x + 52$	A1	5	and no second equation
	<u>Or</u> : Sub'te $y = 3$ in expression for $\frac{dx}{dy}$	M1		
	Attempt formation of eq'n $x = m'y + c$	M1		where m' is attempt at $\frac{dx}{dy}$
	Obtain $x - 7 = -\frac{1}{7}(y - 3)$	A1		or equiv
	Attempt rearrangement to required form Obtain $y = -7x + 52$	n M1 A1	(5) 7	and no second equation

				WWW. M. M.
723	Ма	ark Sch	eme	June 20 Jaths
(i)	State $R = 10$ Attempt to find value of α	B1 M1	or equiv implied by correct answer or its complement; allow sin/cos muddles	^s cloud.com
	Obtain 36.9 or $\tan^{-1}\frac{3}{4}$	A1 3	or greater accuracy 36.8699	
(ii)(a)	Show correct process for finding one angle Obtain (64.16 + 36.87 and hence) 101 Show correct process for finding second	M1 A1	or greater accuracy 101.027	
	Obtain (115.84 + 36.87 and hence) 153	$A1\sqrt{4}$	following their value of α ; or greater accuracy 152.711; and no other between 0 and 360	
(b)	Recognise link with part (i)	M1	signalled by 40 – 20	
	Use fact that maximum and minimum values of sine are 1 and -1 Obtain 60	M1 A1 3 10	may be implied; or equiv	
(i)	Refer to translation and stretch	M1	in either order; allow here equiv inform	nal
	State translation in x direction by 6 State stretch in y direction by 2 [SC: if M0 but one transformation complete	A1 A1 3 ely correc	terms such as 'move', or equiv; now with correct terminology or equiv; now with correct terminology ct, give B1]	7
(ii)	State $2\ln(x-6) = \ln x$	B1	or $2\ln(a-6) = \ln a$ or equiv	
	Show correct use of logarithm property Attempt solution of 3-term quadratic Obtain 9 only	*M1 M1 A1 4	dep *M following correct solution of equation	
(iii)	Attempt evaluation of form $k(v_0 + 4v_1 + v_2)$) M1	any constant k: maybe with $v_0 = 0$ implies the second s	
、 <i>)</i>	Obtain $\frac{1}{3} \times 1(2\ln 1 + 8\ln 2 + 2\ln 3)$	A1	or equiv	L
	Obtain 2.58	A1 3	or greater accuracy 2.5808	

- - - - -

	Obtain 2.58	A1 3	or greater accuracy 2.5808
9 (a)	Attempt use of quotient rule	*M1	or equiv; allow numerator wrong way round and denominator errors
	Obtain $\frac{(kx^2 + 1)2kx - (kx^2 - 1)2kx}{(kx^2 + 1)^2}$	A1	or equiv; with absent brackets implied by
			subsequent correct working
	Obtain correct simplified numerator $4kx$	A1	5
	Equate numerator of first derivative to zero State $x = 0$ or refer to $4kx$ being linear or	o M1 r	dep *M
	observe that, with $k \neq 0$, only one sol'n	A1√ 5	AG or equiv; following numerator of form $k'kx = 0$, any constant k'

10

4723

7 (i)

8 (i)

(iii)

Munu. My Market June 20. Painscloud.com

(b)	Attempt use of product rule Obtain $me^{mx} (x^2 + mx) + e^{mx} (2x + m)$	*M1 A1	or equiv
	Equate to zero and either factorise with factor e^{mx} or divide through by e^{mx} Obtain $mx^2 + (m^2 + 2)x + m = 0$ or equiv	M1	dep *M
	and observe that e^{mx} cannot be zero	A1	
	Attempt use of discriminant Simplify to obtain $m^4 + 4$ Observe that this is positive for all <i>m</i> and hence two roots	M1 A1 A1 7 12	using correct $b^2 - 4ac$ with their <i>a</i> , <i>b</i> , <i>c</i> or equiv or equiv; AG

4724

Mark Scheme

4724 Core Mathematics 4

1	<u>Long Division</u> For leading term $3x^2$ in quotient	B1	
	Suff evid of div process (ax^2 , mult back, attempt sub)	M1	
	$(Quotient) = 3x^2 - 4x - 5$	A1	
	(Remainder) = -x + 2	A1	
	<u>Identity</u> $3x^4 - x^3 - 3x^2 - 14x - 8 = Q(x^2 + x + 2) + R$	*M1	
	$Q = ax^2 + bx + c$, $R = dx + e$ & attempt ≥ 3 ops. de	p*M1	If $a = 3$, this $\Rightarrow 1$ operation
	a = 3, b = -4, c = -5	A1	$dep*M1; Q = ax^2 + bx + c$
	d = -1, e = 2	A1	
	<u>Inspection</u> Use 'Identity' method; if $R = e$, check cf(x) of	correct be	fore awarding 2 nd M1
		4	
2	<u>Indefinite Integral</u> Attempt to connect dx & d θ	*M1	Incl $\frac{dx}{d\theta}$ or $\frac{d\theta}{dx}$; not $dx = d\theta$
	Reduce to $\int 1 - \tan^2 \theta (d\theta)$	A1	A0 if $\frac{d\theta}{dx} = \sec^2 \theta$; but allow all following
			A marks
	Use $\tan^2 \theta = (1,-1) + (\sec^2 \theta, -\sec^2 \theta)$ dep	p*M1	
	Produce $\int 2 - \sec^2 \theta (d\theta)$	A1	
	Correct $\sqrt{1}$ integration of function of type $d + e \sec^2 \theta$	$\sqrt{A1}$	including $d = 0$
	EITHER Attempt limits change (allow degrees here)	M1	(This is 'limits' aspect; the
OR	Attempt integ, re-subst & use original $(\sqrt{3},1)$		integ need not be accurate)
	$\frac{1}{6}\pi - \sqrt{3} + 1$ isw Exact answer required	A1	
		7	

			mm no la
4724	Mark Schem	e	June 20. Jun
3 (i)	$\left(1 + \frac{x}{a}\right)^{-2} = 1 + \left(-2\right)\frac{x}{a} + \frac{-2 - 3}{2}\left(\frac{x}{a}\right)^{2} + \dots$	M1	Check 3 rd term; accept $\frac{x^2}{a}$
	$= 1 - \frac{2x}{a} + \dots \text{or} 1 + \left(-\frac{2x}{a}\right)$	B1	or $1 - 2xa^{-1}$ (Ind of M1)
	+ $\frac{3x^2}{a^2}$ + (or $3(\frac{x}{a})^2$ or $3x^2a^{-2}$)	A1	Accept $\frac{6}{2}$ for 3
	$(a+x)^{-2} = \frac{1}{a^2} \left\{ \text{their expansion of } \left(1+\frac{x}{a}\right)^{-2} \right\} \text{ mult out}$	√A1 4	$\frac{1}{a^2} - \frac{2x}{a^3} + \frac{3x^2}{a^4}$; accept eg a^{-2}
(ii)	Mult out $(1-x)$ (their exp) to produce all terms/cfs(x^2)	M1	Ignore other terms
	Produce $\frac{3}{a^2} + \frac{2}{a} (=0)$ or $\frac{3}{a^4} + \frac{2}{a^3} (=0)$ or AEF	A1	Accept x^2 if in both terms
	$a = -\frac{3}{2}$ www seen anywhere in (i) or (ii)	A1 3	Disregard any ref to $a = 0$
		7	
4 (i)	Differentiate as a product, $u dv + v du$	M1	or as 2 separate products
	$\frac{d}{dx}(\sin 2x) = 2\cos 2x \underline{or} \frac{d}{dx}(\cos 2x) = -2\sin 2x$	B1	
	$e^{x}(2\cos 2x + 4\sin 2x) + e^{x}(\sin 2x - 2\cos 2x)$	A1	terms may be in diff order
	Simplify to $5e^x \sin 2x$ www	A1 4	Accept $10e^x \sin x \cos x$
(ii)	Provided result (i) is of form $k e^x \sin 2x$, k const		
	$\int e^x \sin 2x dx = \frac{1}{k} e^x \left(\sin 2x - 2 \cos 2x \right)$	B1	
	$\left[e^{x}\left(\sin 2x - 2\cos 2x\right)\right]_{0}^{\frac{1}{4}\pi} = e^{\frac{1}{4}\pi} + 2$	B1	
	$\frac{1}{5}\left(e^{\frac{1}{4}\pi}+2\right)$	B1 3	Exact form to be seen
	SR Although 'Hence', award M2 for double integration	by parts	and solving + A1 for correct answer.

5	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} \text{aef} \text{used}$	M1
		$=\frac{4t+3t^2}{2+2t}$	A1
		Attempt to find <i>t</i> from one/both equations	M1 <u>or</u> diff (ii) cartesian eqn \rightarrow M1
		State/imply $t = -3$ is only solution of both equations	A1 subst $(3,-9)$, solve for $\frac{dy}{dx} \rightarrow M1$
		Gradient of curve = $-\frac{15}{4}$ or $\frac{-15}{4}$ or $\frac{15}{-4}$	A1 5 grad of curve = $-\frac{15}{4} \rightarrow A1$
		[SR If $t = 1$ is given as solution & not disqualified, award	$1 \text{ A0} + \sqrt{\text{A1}} \text{ for grad} = -\frac{15}{4} \& \frac{7}{4};$
		If $t = 1$ is given/used as only solution, award A0 + $\sqrt{A1}$ for	or grad = $\frac{7}{4}$]
	(ii)	$\frac{y}{x} = t$	B1
		Substitute into either parametric eqn	M1
		Final answer $x^3 = 2xy + y^2$	A2 4
		[SR Any correct unsimplified form (involving fractions of	or common factors) \rightarrow A1]
			9
6	(i)	$4x \equiv A(x-3)^{2} + B(x-3)(x-5) + C(x-5)$	M1
		<i>A</i> = 5	A1 'cover-up' rule, award B1
		B = -5	A1
		C = -6	A1 4 'cover-up' rule, award B1
		Cands adopting other alg. manip. may be awarded M1 fe	or a full satis method + 3 (a) A1
	(ii)	$\int \frac{A}{x-5} dx = A \ln(5-x) \text{ or } A \ln 5-x \text{ or } A \ln x-5 $	$\sqrt{B1}$ but <u>not</u> $A \ln(x-5)$
		$\int \frac{B}{x-3} dx = B \ln(3-x) \text{ or } B \ln 3-x \text{ or } B \ln x-3 $	$\sqrt{B1}$ but <u>not</u> $B \ln(x-3)$
		If candidate is awarded B0,B0, then award SR $\sqrt{B1}$ for	$A \ln(x-5)$ and $B \ln(x-3)$
		$\int \frac{C}{\left(x-3\right)^2} \mathrm{d}x = -\frac{C}{x-3}$	$\sqrt{B1}$
		$5 \ln \frac{3}{4} + 5 \ln 2$ aef, isw $\sqrt{A \ln \frac{3}{4}} - B \ln 2$ $\sqrt{A \ln \frac{3}{4}} - B \ln 2$	B1 Allow if SR B1 awarded
		-3 $\sqrt{\frac{1}{2}C}$	√B1 5
		[Mark at earliest correct stage & isw; no ln 1]	9

				Mun m
47	24	Mark Schem	е	June 20 June 20 June 20
7	(i)	Attempt scalar prod $\{\mathbf{u}.(4\mathbf{i} + \mathbf{k}) \text{ or } \mathbf{u}.(4\mathbf{i} + 3\mathbf{j} + 2\mathbf{k})\} = 0$	M1	where u is the given vector
		Obtain $\frac{12}{13} + c = 0$ or $\frac{12}{13} + 3b + 2c = 0$	A1	Com
		$c = -\frac{12}{13}$	A1	
		$b = \frac{4}{13}$	A1	cao No ft
		Evaluate $\left(\frac{3}{13}\right)^2$ + (their b) ² + (their c) ²	M1	Ignore non-mention of $$
		Obtain $\frac{9}{169} + \frac{144}{169} + \frac{16}{169} = 1$ AG	A1 6	Ignore non-mention of $$
	(ii)	Use $\cos \theta = \frac{x \cdot y}{ x y }$	M1	
		Correct method for finding scalar product	M1	
		36° (35.837653) Accept 0.625 (rad)	A1 3	From $\frac{18}{\sqrt{17}\sqrt{29}}$
	SF	R If $4\mathbf{i}+\mathbf{k} = (4,1,0)$ in (i) & (ii), mark as scheme but allow the scheme but allow t	final A1	for 31°(31.160968) or 0.544
			9	

8 (i)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(y^2\right) = 2y\frac{\mathrm{d}y}{\mathrm{d}x}$	B1	
	$\frac{\mathrm{d}}{\mathrm{d}x}(uv) = u \mathrm{d}v + v \mathrm{d}u \mathrm{used on} (-7)xy$	M1	
	$\frac{\mathrm{d}}{\mathrm{d}x}\left(14x^2 - 7xy + y^2\right) = 28x - 7x\frac{\mathrm{d}y}{\mathrm{d}x} - 7y + 2y\frac{\mathrm{d}y}{\mathrm{d}x}$	A1	(=0)
	$2y \frac{dy}{dx} - 7x \frac{dy}{dx} = 7y - 28x \rightarrow \frac{dy}{dx} = \frac{28x - 7y}{7x - 2y} \text{www AG}$	A1 4	As AG, intermed step nec
(ii)	Subst $x = 1$ into eqn curve & solve quadratic eqn in y	M1	(y=3 or 4)
	Subst $x = 1$ and (one of) their y-value(s) into given $\frac{dy}{dx}$	M1	$\left(\frac{\mathrm{d}y}{\mathrm{d}x} = 7 \text{ or } 0\right)$
	Find eqn of tgt, with their $\frac{dy}{dx}$, going through (1, their y)	*M1	using (one of) y value(s)
	Produce either $y = 7x - 4$ or $y = 4$	A1	
	Solve simultaneously their two equations dep	* M1	provided they have two
	Produce $x = \frac{8}{7}$	A1 6	
		10	

9	(i)	$\frac{20}{k_1}$ (seconds)	B1 1	
	(ii)	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = -k_2\left(\theta - 20\right)$	B1 1	
	(iii)	Separate variables or invert each side	M1	Correct eqn or very similar
		Correct int of each side $(+ c)$	A1,A1	for each integration
		Subst $\theta = 60$ when $t = 0$ into eqn containing 'c'	M1	or $\theta = 60$ when $t =$ their (i)
		$c (or - c) = \ln 40 \text{ or } \frac{1}{k_2} \ln 40 \text{ or } \frac{1}{k_2} \ln 40k_2$	A1	Check carefully their 'c'
		Subst their value of <i>c</i> and $\theta = 40$ back into equation	M1	Use scheme on LHS
		$t = \frac{1}{k_2} \ln 2$	Al	Ignore scheme on LHS
		Total time = $\frac{1}{k_2} \ln 2$ + their (i) (seconds)	√A1 8	
	SR I	f the negative sign is omitted in part (ii), allow all marks	in (iii) wi	th ln 2 replaced by $\ln \frac{1}{2}$.
	SR I	f definite integrals used, allow M1 for eqn where $t = 0$ and	d $\theta = 60$	correspond; a second M1 for eqn where

t = t and $\theta = 40$ correspond & M1 for correct use of limits. Final answer scores 2.

MWWW. My Marks June 20. Pains cloud. com

4725 Further Pure Mathematics 1

1.		B1		State correct value of S_{250} or S_{100}
		M1		Subtract $S_{250} - S_{100}$ (or S_{101} or S_{99})
	984390625 - 25502500 = 958888125	A1	3	Obtain correct exact answer
			3	
2.	3a + 5b = 1, a + 2b = 1	M1		Obtain a pair of simultaneous
		M1		equations
	a = -3, b = 2	A1 A1	4	Attempt to solve
			4	Obtain correct answers.
3.	(i) 11 – 29i	B1 B1	2	Correct real and imaginary parts
	(ii) 1+41i	B1 B1	2	Correct real and imaginary parts
			4	
4.	Either $p+q=-1, pq=-8$	B1		Both values stated or used
	$\frac{p+q}{m}$	B1		Correct expression seen
	pq			
	7	M1		Use their values in their expression
	$-\frac{1}{8}$	A1	4	Obtain correct answer
	0		4	
	0r + 1 + 1 - 8	B1		Substitute $x = \frac{1}{u}$ and use new
	$OI \qquad \frac{1}{p} + \frac{1}{q} = 0$			quadratic
	n+a=1	B1		Correct value stated
	7	M1		Use their values in given expression
	$-\frac{1}{8}$	A1		Obtain correct answer
	_			
	$\int -1\pm\sqrt{33}$	M1		Find roots of given quadratic
	$\frac{1}{2}$			equation
		A1		Correct values seen
	<u> </u>	M1		Use their values in given expression
	8	A1		Obtain correct answer
5.	(i) $u^3 = \{(-)(5u+7)\}^2$	M1		Use given substitution and rearrange
		A1		Obtain correct expression, or
				equivalent
	3 25 2 70 40 0	A 1	2	Obtain correct final consum
	u - 25u - 70u - 49 = 0	AI	3	Obtain confect final answer
		M1		Use coefficient of u of their orbits or
	(11)	111		identity connecting the symmetric
				functions and substitute values from
				given equation
	70		2	Obtain correct answer
	-/0		5	

				WWW. D M
472	5 Mark Sch	neme		June 20 June 20
6.	(i) $3\sqrt{2}, -\frac{\pi}{4}$ or -45° AEF	B1 B1	2	State correct answers
	(ii)(a)	B1B1 B1 ft	3	Circle, centre $(3, -3)$, through <i>O</i> ft for $(\pm 3, \pm 3)$ only
	(ii)(b)	B1 B1 B1	3	Straight line with +ve slope, through (3, -3) or their centre Half line only starting at centre
	(iii)	B1ft B1ft B1ft	3	Area above horizontal through <i>a</i> , below (ii) (b) Outside circle
7.	(i)	M1 A1	2	Show that terms cancel in pairs Obtain given answer correctly
	(ii)	M1 A1	2	Attempt to expand and simplify Obtain given answer correctly
	(iii)	B1 B1		Correct $\sum r$ stated $\sum 1 = n$
		M1* *DM1		Consider sum of 4 separate terms on RHS
	$(n+1)^4 - 1 - n(n+1)(2n+1) - 2n(n+1) - n$	A1		Correct unsimplified expression
	$4\sum_{r=1}^{n} r^{3} = n^{2} (n+1)^{2}$	A1	6 10	Obtain given answer correctly
8.	(i)	B1 B1 B1	3	Find coordinates $(0, 0) (3, 1) (2, 1)$ (5, 2) found
	(ii) $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$	B1 B1	2	Each column correct
	$ \begin{array}{c} (1 & 1) \\ (\text{iii}) & Either \\ (1 & 2) \end{array} $	B1 M1		Correct inverse for their (ii) stated Post multiply C by inverse of (ii)
	$\begin{pmatrix} 0 & 1 \end{pmatrix}$	A1ft		Correct answer found
	Or	M1 A2ft		Set up 4 equations for elements from correct matrix multiplication All elements correct, -1 each error
		B1 B1 B1	6 11	Shear, x axis invariant or parallel to x-axis eg image of $(1, 1)$ is $(3, 1)$ SR allow s.f. 2 or shearing angle of correct angle to appropriate axis

				m	
				N. MYN MYN	
4725	Mark Sc	Mark Scheme		June 20. Tarris	
9. (i) a	$\begin{vmatrix} a & 1 \\ 1 & 2 \end{vmatrix} - \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} 1 & a \\ 1 & 1 \end{vmatrix}$	M1 A1		Correct expansion process shown Obtain correct unsimplified expression	DUd.COL
(ii) (ii) (ii)	$a^2 - 2a$ = 0 or 1	Al M1 A1ft A1ft	3	Obtain correct answer Equate their det to 0 Obtain correct answers, ft solving a quadratic	
(iii) (a) (b)		B1 B1 B1 B1 B1	4 10	Equations consistent, but non unique solutions Correct equations seen & inconsistent, no solutions	
10. i) $u_2 =$	$= 7 \ u_3 = 19$	M1 A1 A1	3	Attempt to find next 2 terms Obtain correct answers Show given result correctly	
(ii) $u_n =$	$= 2(3^{n-1}) + 1$	M1 A1	2	Expression involving a power of 3 Obtain correct answer	
(iii) <i>u_{n+1}</i>	$= 3(2(3^{n-1})+1) - 2$	B1ft M1		Verify result true when $n = 1$ or $n = 2$ Expression for u_{n+1} using recurrence relation	
u_{n+1}	$_{1} = 2(3^{n}) + 1$	A1 A1 B1		Correct unsimplified answer Correct answer in correct form Statement of induction conclusion	
			5 10		

4726 Further Pure Mathematics 2

1(i)	Attempt area = $\pm \Sigma(0.3y)$ for at least three y values	M1
	Get 1.313(1) or 1.314	A1
(ii)	Attempt ± sum of areas (4 or 5 values) Get 0.518(4)	M1 A1
	Or Attempt answer to part (i)-final rectangle Get 0.518(4)	M1 A1
(iii)	Decrease width of strips	B1
2	Attempt to set up quadratic in x Get $x^2(y-1) - x(2y+1) + (y-1)=0$ Use $b^2 \ge 4ac$ for real x on their quadratic Clearly solve to AG	M1 A1 M1 A1
3(i)	Reasonable attempt at chain rule Reasonable attempt at product/quotient rule Correctly get $f'(0) = 1$ Correctly get $f''(0) = 1$	M1 M1 A1 A1
(ii)	Reasonable attempt at Maclaurin with their values Get $1 + x + \frac{1}{2}x^2$	M1 A1√
4	Attempt to divide out.	M1
	Get x^{3} = $A(x-2)(x^{2}+4)+B(x^{2}+4)+(Cx+D)(x-2)$	M1
	State/derive/quote A=1 Use x values and/or equate coeff	A1 M1

M1	May be implied
A1	Or greater accuracy
M1 A1	May be implied Or greater accuracy SC If answers only seen, 1.313(1) or 1.314 B2 0.518(4) B2 -1.313(1) or -1.314 B1 -0.518(4) B1
M1 A1	
B1	Use more strips or equivalent
M1 A1 M1 A1	Must be quadratic; = 0 may be implied Allow =,>,<, \leq here; may be implied If other (in)equalities used, the step to AG must be clear SC Reasonable attempt to diff. using prod/quot rule M1 Solve correct dy/dx=0 to get $x=-1, y = \frac{1}{4}$ A1 Attempt to justify inequality e.g. graph or to show $\frac{d^2y}{dx^2} > 0$ M1 Clearly solve to AG A1
M1 M1 A1 A1	Product in answer Sum of two parts SC Use of Inv = sinx follows same scheme
M1	$\ln af(0) + bf'(0)x + cf''(0)x^2$
A1√	From their f(0), f'(0), f''(0) in a correct Maclaurin; all non-zero terms
M1 M1	Or $A+B/(x-2)+(Cx(+D))/(x^2+4)$; allow $A=1$ and/or $B=1$ quoted Allow \sqrt{mark} from their Part Fract; allow $D=0$ but not $C=0$
A1 M1	To potentially get all their constants

A1 A1 WWW. Mynainscioud.com

Get *B*=1, *C*=1, *D*=-2

5(i) Derive/quote $d\theta=2dt/(1+t^2)$ Replace their $\cos \theta$ and their $d\theta$, both in terms of t Clearly get $\int (1-t^2)/(1+t^2) dt$ or equiv Attempt to divide out Clearly get/derive AG

Integrate to $a \tan^{-1} bt - t$

 $Get^{1/2}\pi - 1$

B1 May be implied M1 Not $d\theta = dt$ Accept limits of *t* quoted here A1 M1 Or use AG to get answer above A1 SC Derive $d\theta = 2\cos^{2t}/2\theta dt$ B1 Replace $\cos\theta$ in terms of half-angles and their $d\theta$ (\neq dt) M1 Get $\int 2\cos^2 \frac{1}{2}\theta - 1 \, dt$ or $\int 1 - 1/2\cos^{2t/2}\theta \cdot 2/(1+t^2) dt$ A1 Use $\sec^{2} \frac{1}{2} \theta = 1 + t^{2}$ M1 Clearly get/derive AG A1 M1 A1 For either integral; allow attempt at ln M1

For one other correct from cwo

For all correct from cwo

Get $k \sinh^{-1}k_1 x$ Get $\frac{1}{3} \sinh^{-1}\frac{4}{3}x$ Get $\frac{1}{2} \sinh^{-1}\frac{4}{3}x$ Use limits in their answers Attempt to use correct ln laws to set up a solvable equation in *a* Get $a = 2^{\frac{1}{3}} \cdot 3^{\frac{1}{2}}$

A1Or In versionA1Or In versionM1M1

M1

A1 Or equivalent

(ii)

- MWWW. My May Mastra June 20. Paths cloud. com *y*-axis asymptote; equation may be implied if clear B1
- B1 Shape
- $y=\pm 1$ asymptotes; may be implied if seen B1 as on graph

(ii)	Reasonable attempt at product rule, giving two terms	M1
	Use correct Newton-Raphson at least once with their f'(x) to produce an x_2	M1
	$\text{Get} x_2 = 2.0651$	A1 ⁻
	Get $x_3 = 2.0653, x_4 = 2.0653$	A1
(iii)	Clearly derive $\coth x = \frac{1}{2}x$	B1
	Attempt to find second root e.g. symmetry Get ± 2.0653	M1
	307 - 2.0000	A1
8(i)	(a) Get $\frac{1}{2}(e^{\ln a} + e^{-\ln a})$	M1
	Use $e^{\ln a} = a$ and $e^{-\ln a} = 1/a$	M1
	Clearly derive AG	A1
	(b) Reasonable attempt to multiply out their attempts at exponential definitions of cosh and sinh	M1
	Correct expansion seen as $e^{(x+y)}$ etc. Clearly tidy to AG	A1 A1
(ii)	Use $x = y$ and $\cosh \theta = 1$ to get AG	B1
(iii)	Attempt to expand and equate coefficients	M1
	Attempt to eliminate R (or a) to set up a solvable equation in a (or R)	M1
	Get $a = \frac{3}{2}$ (or $R = 12$)	A1
	Replace for a (or R) in relevant equation to	M1
	set up solvable equation in R (or a) Get $R=12$ (or $a = \frac{3}{2}$)	A1
(iv)	Quote/derive $(\ln^{3}/_{2}, 12)$	B1 ⁻
		B1 ⁻
9(i)	Use $\sin\theta . \sin^{n-1}\theta$ and parts	M1

IVI I	
M1	May be implied
A1√ A1	One correct at any stage if reasonable cao; or greater accuracy which rounds
B1 M1 A1√	AG; allow derivation from AG Two roots only ± their iteration in part (ii)
M1 M1 A1	
M1	4 terms in each
A1 A1 B1	With $e^{-(x-y)}$ seen or implied
M1 M1 A1 M1	(13 = $R \cosh \ln a = R(a^2+1)/2a$ 5 = $R \sinh \ln a = R(a^2-1)/2a$) SC If exponential definitions used, $8e^x + 18e^{-x} = Re^x/a + Rae^{-x}$ and same scheme follows
A 1	Ignore if $a=2/3$ also given
B1√ B1√	On their <i>R</i> and <i>a</i>
M1	Reasonable attempt with 2 parts, one yet to be integrated

MWWW. My Marks June 20. That insciout.com

Get
$-\cos\theta.\sin^{n-1}\theta+(n-1)\int\sin^{n-2}\theta.\cos^2\theta d\theta$
Replace $\cos^2 = 1 - \sin^2$
Clearly use limits and get AG

(ii) (a) Solve for r=0 for at least one θ Get $(\theta) = 0$ and π

(b)Correct formula used; correct r
Use $6I_6 = 5I_4$, $4I_4 = 3I_2$
Attempt I_0 (or I_2)
Replace their values to get I_6
Get $5\pi/32$
Use symmetry to get $5\pi/32$

Or	
Correct formula used; correct r	M1
Reasonable attempt at formula	
$(2i\sin\theta)^6 = (z - \frac{1}{z})^6$	M1
Attempt to multiply out both sides	
(7 terms)	M1
Get correct expansion	A1
Convert to trig. equivalent and integrate their	
expression	M1
Get 5π/32	A1

Or		
Correct formula used; correct r	M1	
Use double-angle formula and attempt to		
cube (4 terms)	M1	
Get correct expression	A1	
Reasonable attempt to put $\cos^2 2\theta$ into		
integrable form and integrate	M1	
Reasonable attempt to integrate		
$\cos^3 2\theta$ as e.g. $\cos^2 2\theta$. $\cos 2\theta$	M1	cwo
Get $5\pi/32$	A1	

- A1 Signs need to be carefully considered
- M1 A1
- M1 θ need not be correct
- A1 Ignore extra answers out of range
- B1 General shape (symmetry stated or approximately seen)
- B1 Tangents at $\theta=0, \pi$ and max *r* seen

M1	May be $\int r^2 d\theta$ with correct limits
M1	At least one
M1	$(I_0 = \frac{1}{2}\pi)$
M1	
A1	
A1	May be implied but correct use of limits

cwo

must be given somewhere in answer

4727

MWWW. My Marks June 20. Pains cloud. com

4727 Further Pure Mathematics 3

1		$\left(\frac{1}{2}\sqrt{3} + \frac{1}{2}i\right)^{\frac{1}{3}} = \left(\cos\frac{1}{6}\pi + i\sin\frac{1}{6}\pi\right)^{\frac{1}{3}}$	B1	For arg $z = \frac{1}{6}\pi$ seen or implied
		$= \cos \frac{1}{10} \pi + i \sin \frac{1}{10} \pi,$	M1	For dividing $\arg z$ by 3
		18 18 18 $\cos \frac{13}{2}\pi + i \sin \frac{13}{2}\pi$	Δ1	For any one correct root
		$\frac{25}{18}$ $\frac{1}{18}$		For 2 other sector d is seen to $0 = 0 = 2$
		$\cos\frac{23}{18}\pi + 1\sin\frac{23}{18}\pi$	AI 4	For 2 other roots and no more in range 0, $\theta < 2\pi$
			4	
2	(i)	$\frac{1}{5}e^{-\frac{1}{3}\pi i}$	B1 1	For stating correct inverse in the form $r e^{i\theta}$
	(ii)	$r_1 e^{i\theta} \times r_2 e^{i\phi} = r_1 r_2 e^{i(\theta + \phi)}$	M1 A1 2	For stating 2 distinct elements multiplied For showing product of correct form
	(iii)	$Z^2 = e^{2i\gamma}$	B1	For $e^{2i\gamma}$ seen or implied
		$\Rightarrow e^{2i\gamma-2\pi i}$	B1 2	For correct answer. aef
			5	
3	(i)	$[6-4\lambda, -7+8\lambda, -10+7\lambda] \text{ on } p$ $\Rightarrow 3(6-4\lambda) - 4(-7+8\lambda) - 2(-10+7\lambda) = 8$	B1 M1	For point on l seen or implied For substituting into equation of p
		$\Rightarrow \lambda = 1 \Rightarrow (2, 1, -3)$	A1 3	For correct point. Allow position vector
	(ii)	METHOD 1		
		$\mathbf{n} = [-4, 8, 7] \times [3, -4, -2]$	M1* M1 (*dop)	For direction of <i>l</i> and normal of <i>p</i> seen For attempting to find $\mathbf{n}_1 \times \mathbf{n}_2$
		$\mathbf{n} = k[12, 13, -8]$	Al	For correct vector
		(2,1,-3) OR $(6,-7,-10)$	M1	For finding scalar product of their point on l with their attempt at n , or equivalent
		$\Rightarrow 12x + 13y - 8z = 61$	A1 5	For correct equation, aef cartesian
		METHOD 2		
		$\mathbf{r} = [2, 1, -3] OR [6, -7, -10] + \lambda [-4, 8, 7] + \mu [3, -4, -2]$	M1 A1√	For stating eqtn of plane in parametric form (may be implied by next stage), using $[2, 1, -3]$ (ft from
				(i)) Or $[6, -7, -10]$, n ₁ and n ₂ (as above)
		$x = 2 - 4\lambda + 3\mu$	M1	For writing as 3 linear equations
		$y = 1 + 8\lambda - 4\mu$ $z = -3 + 7\lambda - 2\mu$	M1	For attempting to eliminate λ and μ
		$\Rightarrow 12x + 13y - 8z = 61$	A1	For correct equation aef cartesian
		METHOD 3		
		$3(6+3\mu) - 4(-7-4\mu) - 2(-10-2\mu) = 8$	M1	For finding foot of perpendicular from point on l to p
		$\Rightarrow \mu = -2 \Rightarrow (0, 1, -6)$	A1	For correct point or position vector
		From 3 points (2, 1, -3), (6, -7, -10), (0,	1, -6),	
		n = vector product of 2 of [2, 0, 3], [6, -8, -4], [-4, 8, 7]	M1	Use vector product of 2 vectors in plane
		\Rightarrow n = k[12, 13, -8]		
		(2, 1, -3) OR (6, -7, -10)	M1	For finding scalar product of their point on <i>l</i> with their attempt at n , or equivalent
		$\Rightarrow 12x + 13y - 8z = 61$	A1	For correct equation aef cartesian
			8	

				mm m
4727	Mar	k Scl	nem	June 20 June 20 June 20
4 (i)	IF $e^{\int \frac{1}{1-x^2} dx} = e^{\frac{1}{2} \ln \frac{1+x}{1-x}} = \left(\frac{1+x}{1-x}\right)^{\frac{1}{2}}$	M1 A1	2	For IF stated or implied. Allow $\pm \int$ and omission of dx For integration and simplification to AG (intermediate step must be seen)
(ii)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(y\left(\frac{1+x}{1-x}\right)^{\frac{1}{2}}\right) = (1+x)^{\frac{1}{2}}$	M1*	k	For multiplying both sides by IF
	$y\left(\frac{1+x}{1-x}\right)^{\frac{1}{2}} = \frac{2}{3}(1+x)^{\frac{3}{2}} + c$	M1 A1		For integrating RHS to $k(1+x)^n$ For correct equation (including + <i>c</i>) In either order:
	$(0,2) \Rightarrow 2 = \frac{2}{3} + c \Rightarrow c = \frac{4}{3}$	M1 (*de M1 (*de	ep) ep)	For substituting $(0, 2)$ into their GS (including $+c$) For dividing solution through by IF, including dividing <i>c</i> or their numerical value for <i>c</i>
	$y = \frac{2}{3} \left(1 + x \right) \left(1 - x \right)^{\frac{1}{2}} + \frac{4}{3} \left(\frac{1 - x}{1 + x} \right)^{\frac{1}{2}}$	A1	6	For correct solution aef (even unsimplified) in form $y = f(x)$
		8	8	
5 (i)	$m^2 - 6m + 9 \ (= 0) \Rightarrow m = 3$	M1 A1		For attempting to solve correct auxiliary equation For correct <i>m</i>
	$CF = (A + Bx)e^{3x}$	A1	3	For correct CF
(ii)	ke^{3x} and kxe^{3x} both appear in CF	B1	1	For correct statement
(iii)	$y = kx^2 e^{3x} \Rightarrow y' = 2kxe^{3x} + 3kx^2 e^{3x}$	M1 A1		For differentiating kx^2e^{3x} twice For correct y' aef
	$\Rightarrow y'' = 2ke^{3x} + 12kxe^{3x} + 9kx^2e^{3x}$	A1		For correct y'' aef
	$\Rightarrow k e^{3x} \left(2 + 12x + 9x^2 - 12x - 18x^2 + 9x^2 \right) = e^{3x}$	M1		For substituting y'' , y' , y into DE
	$\Rightarrow k = \frac{1}{2}$	A1	5	For correct <i>k</i>
		9	0	

4727	Mar	k Schem	ne June 20
			UTS CT
6 (i)	METHOD 1 $\mathbf{n}_1 = [1, 1, 0] \times [1, -5, -2]$	M1	For attempting to find vector product of the pair of
	-[2, 2, 6] - k[1, 1, 2]	A1	direction vectors For correct n ₁
	= [-2, 2, -0] = k[1, -1, 5] Use (2, 2, 1)	M1	For substituting a point into equation
	$\Rightarrow \mathbf{r} \cdot [-2, 2, -6] = -6 \Rightarrow \mathbf{r} \cdot [1, -1, 3] = 3$	A1 4	For correct equation. aef in this form
	METHOD 2		
	$x = 2 + \lambda + \mu$	M1	For writing as 3 linear equations
	$y = 2 + \lambda - 5\mu$	M1	For attempting to eliminate λ and μ
	$z = 1 - 2\mu$ $\Rightarrow r - \nu + 3z - 3$	A 1	For correct cartesian equation
	$\Rightarrow \mathbf{r} \cdot \mathbf{j} + 32 = \mathbf{j}$ $\Rightarrow \mathbf{r} \cdot [1, -1, 3] = 3$	Al	For correct equation. aef in this form
(ii)	For $\mathbf{r} = \mathbf{a} + t\mathbf{b}$		
	METHOD 1		
	$\mathbf{b} = [1, -1, 3] \times [7, 17, -3]$	M1	For attempting to find $\mathbf{n}_1 \times \mathbf{n}_2$
	= k[2, -1, -1]	AIν	For a correct vector. It from \mathbf{n}_1 in (i)
	e.g. x, y or z = 0 in $\begin{cases} x - y + 3z = 3\\ 7x + 17y - 3z = 21 \end{cases}$	M1	For attempting to find a point on the line
	$\Rightarrow \mathbf{a} = \left[0, \frac{3}{2}, \frac{3}{2}\right] \text{OR} \left[3, 0, 0\right] \text{OR} \left[1, 1, 1\right]$	A1√	For a correct vector. ft from equation in (i) SR a correct vector may be stated without working
	Line is (e.g.) $\mathbf{r} = [1, 1, 1] + t [2, -1, -1]$	A1√ 5	For stating equation of line ft from \mathbf{a} and \mathbf{b} SR for $\mathbf{a} = [2, 2, 1]$ stated award M0
	METHOD 2		
	Solve $\begin{cases} x - y + 3z = 3 \end{cases}$		In either order:
	Solve $\left(7x+17y-3z=21\right)$	M1	For attempting to solve equations
	by eliminating one variable (e.g. z) Use parameter for another variable (e.g. x) to find other variables in terms of t	M1	For attempting to find parametric solution
		A1√	For correct expression for one variable
	(eg) $y = \frac{1}{2} - \frac{1}{2}t, \ z = \frac{1}{2} - \frac{1}{2}t$	A1	For correct expression for the other variable
			ft from equation in (i) for both
	Line is (eg) $\mathbf{r} = \left[0, \frac{3}{2}, \frac{3}{2}\right] + t \left[2, -1, -1\right]$	A1√	For stating equation of line. ft from parametric solutions
	METHOD 3		Solutions
	eg x, y or z = 0 in $\begin{cases} x - y + 3z = 3\\ 7x + 17y - 3z = 21 \end{cases}$	M1	For attempting to find a point on the line
	$\Rightarrow \mathbf{a} = \left[0, \frac{3}{2}, \frac{3}{2}\right] OR \left[3, 0, 0\right] OR \left[1, 1, 1\right]$	A1√	For a correct vector. ft from equation in (i) SR a correct vector may be stated without working SR for $\mathbf{a} = [2, 2, 1]$ stated award M0
	eg [3, 0, 0]-[1, 1, 1]	M1	For finding another point on the line and using it with the one already found to find b
	b = $k[2, -1, -1]$ Line is (eg) r = $[1, 1, 1] + t[2, -1, -1]$	A1√ A1√	For a correct vector. ft from equation in (i) For stating equation of line. ft from a and b

				WWW. MYN MA
4727	Mark	June 20. Tarres		
6 (ii) contd	METHOD 4			
	A point on Π_1 is [2+ λ + μ ,2+ λ -5 μ ,1-2 μ]	M1		For using parametric form for Π_1 and substituting into Π_2
	On $\Pi_2 \Rightarrow$ [2+ λ + μ , 2+ λ -5 μ , 1-2 μ].[7, 17, -3]=21	A1		For correct unsimplified equation
	$\Rightarrow \lambda - 3\mu = -1$	Al		For correct equation
	Line is (e.g.) $\mathbf{r} = [2, 2, 1] + (3\mu - 1)[1, 1, 0] + \mu[1, -5, -2]$	M1		For substituting into Π_1 for λ <i>or</i> μ
	$\Rightarrow \mathbf{r} = [1, 1, 1] \text{ or } \left[\frac{7}{3}, \frac{1}{3}, \frac{1}{3}\right] + t [2, -1, -1]$	A1		For stating equation of line
		9		
7 (i)	$\cos 3\theta + i \sin 3\theta = c^3 + 3i c^2 s - 3c s^2 - i s^3$	M1		For using de Moivre with $n = 3$
	$\Rightarrow \cos 3\theta = c^3 - 3cs^2$ and	A1		For both expressions in this form (seen or implied)
	$\sin 3\theta = 3c^2s - s^3$			SR For expressions found without de Moivre M0 A0
	$\Rightarrow \tan 3\theta = \frac{3c^2s - s^3}{c^3 - 3cs^2}$	M1		For expressing $\frac{\sin 3\theta}{\cos 3\theta}$ in terms of <i>c</i> and <i>s</i>
	$\tan 3\theta = \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta} = \frac{\tan\theta(3 - \tan^2\theta)}{1 - 3\tan^2\theta}$	A1	4	For simplifying to AG
(ii) (a)	$\theta = \frac{1}{12}\pi \Rightarrow \tan 3\theta = 1$			
	$\Rightarrow 1 - 3t^2 = t(3 - t^2) \Rightarrow$	B1	1	For both stages correct AG
(b)	$t^3 - 3t^2 - 3t + 1 = 0$			
(0)	$(t+1)(t^2 - 4t + 1) = 0$	MI A1		For attempt to factorise cubic For correct factors
	\Rightarrow (t = -1), t = 2 ± $\sqrt{3}$	A1		For correct roots of quadratic
	− sign for smaller root ⇒ $\tan \frac{1}{2\pi} \pi = 2 - \sqrt{3}$	A1	4	For choice of $-$ sign and correct root AG
(iii)	$dt = (1+t^2) d\theta$	B1		For differentiation of substitution and use of $\sec^2 \theta = 1 + \tan^2 \theta$
	$\Rightarrow \int_0^{\frac{1}{12}\pi} \tan 3\theta \mathrm{d}\theta$	B1		For integral with correct θ limits seen
	$\begin{bmatrix} 1 & & \\ & & \end{bmatrix}^{\frac{1}{12}\pi} = 1 (1)$	M1		For integrating to $k \ln(\sec 3\theta)$ OR $k \ln(\cos 3\theta)$
	$= \left\lfloor \frac{1}{3} \ln \left(\sec 3\theta \right) \right\rfloor_{0}^{12} = \frac{1}{3} \ln \left(\sec \frac{1}{4}\pi \right)$	1111		
	$= \left\lfloor \frac{1}{3} \ln \left(\sec 3\theta \right) \right\rfloor_{0}^{12} = \frac{1}{3} \ln \left(\sec \frac{1}{4}\pi \right)$ $= \frac{1}{3} \ln \sqrt{2} = \frac{1}{6} \ln 2$	M1		For substituting limits and $\sec \frac{1}{4}\pi = \sqrt{2}$ OR $\cos \frac{1}{4}\pi = \frac{1}{\sqrt{2}}$ seen

4727		Mark Schem	ne June 20.
8 (i)	$a^2 = (ap)^2 = apap \implies a = pap$	B1	For use of given properties to obtain AG
	$p^2 = (ap)^2 = apap \implies p = apa$	B1 2	For use of given properties to obtain AG SR allow working from AG to obtain relevant properties
(ii)	$(p^2)^2 = p^4 = e \Rightarrow \text{order } p^2 = 2$	B1	For correct order with no incorrect working seen
	$(a^2)^2 = (p^2)^2 = e \implies \text{order } a = 4$	B1	For correct order with no incorrect working seen
	$(ap)^4 = a^4 = e \implies \text{order } ap = 4$	B1	For correct order with no incorrect working seen
	$\left(ap^{2}\right)^{2} = ap^{2}ap^{2} = ap \cdot a \cdot p = a^{2}$	M1	For relevant use of (i) or given properties
	$OR \ ap^2 = a . a^2 = a^3 \implies$ $\left(ap^2\right)^2 = a^6 = a^2$	A1 5	For correct order with no incorrect working seen
(iii)	$\Rightarrow \text{ order } ap^2 = 4$ METHOD 1 $p^2 = a^2, ap^2 = a^3$	M2	For use of the given properties to simplify p^2 and $a p^2$
	$\Rightarrow \{e, a, p^2, ap^2\} = \{e, a, a^2, a^3\}$	A1	For obtaining a^2 and a^3
	which is a cyclic group	A1 4	For justifying that the set is a group
	METHOD 2 $ \frac{e}{a} \frac{a}{p^2} \frac{ap^2}{ap^2} $ $ \frac{a}{a} \frac{a}{a} \frac{p^2}{ap^2} \frac{ap^2}{ap^2} \frac{ap^2}{ap^2} $ $ \frac{a}{ap^2} \frac{ap^2}{ap^2} \frac{ap^2}{ap^2} \frac{a}{a} \frac{a}{ap^2} $	M1 A1	For attempting closure with all 9 non-trivial products seen For all 16 products correct
	Completed table is a cyclic group	B2	For justifying that the set is a group
	METHOD 3 $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1	For attempting closure with all 9 non-trivial products seen For all 16 products correct
	Identity = e	B1	For stating identity
	EITHER: e is in each row/column OR: p^2 is self-inverse; a, ap^2 form a inverse pai	B1 m	For justifying inverses ($e^{-1} = e$ may be assumed)

4727	Mar	rk Scherr	le June 20. nains cio
(iv)	METHOD 1 e.g. $a \cdot ap = a^2 p = p^3$ $ap \cdot a = p$ commutative	M1 M1 B1 A1 4	For attempting to find a non-commutative pair of elements, at least one involving <i>a</i> (may be embedded in a full or partial table) For simplifying elements both ways round For a correct pair of non-commutative elements For stating <i>Q</i> non-commutative, with a clear argument
	METHOD 2 Assume commutativity, so (eg) $ap = pa$ (i) \Rightarrow	M1	For setting up proof by contradiction
	$p = ap.a \Rightarrow p = pa.a = pa^2 = pp^2 = p^3$	M1	For using (i) and/or given properties
	But p and p^3 are distinct	B1	For obtaining and stating a contradiction
	$\Rightarrow Q$ is non-commutative	A1	For stating <i>Q</i> non-commutative, with a clear argument
		15	

WWWW. My Marks Marks

4728 Mechanics 1

1 i ii	$x^{2} + (3x)^{2} = 6^{2}$ $10x^{2} = 36$ $x = 1.9(0) (1.8973)$ $\tan\theta = 3x/x (= 3 \times 1.9/1.9) = 3$ $\theta = 71.6^{\circ} \qquad (71.565)$	M1 A1 [3] M1 A2	Using Pythagoras, 2 squared terms May be implied Not surd form unless rationalised $(3\sqrt{10})/5$, $(6\sqrt{10})/10$ Must target correct angle. Accept sin $\theta = 3 \times 1.9/6$ or $\cos\theta = 1.9/6$ which give $\theta = 71.8^{\circ}$, $\theta = 71.5^{\circ}$ respectively, A1. SR $\theta = 71.6^{\circ}$ from $\tan\theta = 3x/x$ if x is incorrect;
2 i		[3] B1 B1 [2]	Inverted V shape with straight lines. Starts at origin, ends on <i>t</i> -axis, or horizontal axis if no labelling evident
ii	6 = 3v/2 $v = 4 \text{ ms}^{-1}$	M1 A1 A1 [3]	Not awarded if special (right angled, isosceles) triangle assumed, or s = (u+v)t/2, or max v at specific t.
iii	T accn = $4/2.4$ or s accn = $16/(2x2.4)$ T accn = $12/3$ s or s accn = $10/3$ Deceleration = $4/(3 - 12/3)$ or $16/2(6-10/3)$ Deceleration = 3 ms^2	M1* A1 D*M1 A1 [4]	Uses $t = v/a$ or $s = v^2/2a$. May be implied Accept 4/(3 - 1.67) or 16/2(6-3.33) Accept 3.01; award however $v = 4$ obtained in (ii). $a = -3$ gets A0.
3 i	$\begin{array}{c} 0.8 \text{gsin30} \\ 0.8 \text{x} 0.2 \\ 0.8 \times 9.8 \text{sin30} - T = 0.8 \text{x} 0.2 \\ T = 3.76 \text{ N} \end{array} $ AG	B1 B1 M1 A1 [4]	Not for 3.92 stated without justification Or 0.16 Uses N2L // to slope, 3 non-zero terms, inc <i>ma</i> Not awarded if initial B1 withheld.
ii	$3.76 - F = 3 \times 0.2$ F = 3.16 $3.16 = \mu x 3 \times 9.8$ $\mu = 0.107 (0.10748)$	M1 A1 A1 M1 A1 [5]	Uses N2L, B alone, 3 non-zero terms Needs <i>correct value</i> of <i>T</i> . May be implied. Uses $F = \mu R$ (Accept with $R = 3$, but not with $R=0.8g(\cos 30), F=0.6, F=3.76, F = f(\max P)$) Not 0.11, 0.108 (unless it comes from using g=9.81 consistently through question.

4728	Mark S	cheme	June 20	MU NSERS
4 i	$v^2 = 7^2 - 2 \times 9.8 \times 2.1$ $v = 2.8 \text{ ms}^{-1}$	M1 A1 A1 [3]	Uses $v^2 = u^2 - 2gs$. Accept $7^2 = u^2 + 2gs$	SCIOUD.COM
ii	v = 0 $0^2 = 7^2 - 2 \times 9.8s$ s = 2.5 m	B1 M1 A1 [3]	Velocity = 0 at greatest height Uses $0 = u^2 - 2gs$. Accept $7^2 = 2 \times 9.8s$.	-
iii	v = -5.7 (or $t = 0.71$ oef to reach greatest height) -5.7 = 7 - 9.8t or $5.7 = (0+) 9.8Tt = 1.3(0)$ s (1.2959)	B1 M1 A1 [3]	Allows for change of direction Uses $v = u + \text{or} - \text{gt}$. Not 1.29 unless obtained from g=9.81 consistently	
5 i	$0.5 \times 6 = 0.5v + m(v+1) 3 = 0.5v + mv + m v(m + 0.5) = -m + 3 $ AG	M1 A1 A1 [3]	Uses CoLM. Includes g throughout MR-1	
ii	Momentum before = +/- $(4m - 0.5 \times 2)$ +/- $(4m - 0.5 \times 2) = mv + 0.5(v+1)$ $4m - 0.5 \times 2 = mv + 0.5(v+1)$ v(m+0.5) = 4m - 1.5	B1 M1 A1 A1 [4]	Includes g throughout MR-1 Needs opposite directions in CoLM on "before" side only. RHS in format am + b or b + am. Ignore values for a and b if quoted.	•
iii	4m - 1.5 = -m + 3 5m = 4.5 m = 0.9 kg $0.9 + v(0.9+0.5) = 3 \text{ or } 4 \times 0.9 - 1.5 =$ v(0.9+0.5) v = (3-0.9)/(0.9+0.5) = 2.1/1.4 $v = 1.5 \text{ ms}^{-1}$	M1 A1 M1 A1 [4]	Attempts to obtain eqn in 1 variable from answers in (i) and (ii) Ignore $m = -0.5$ if seen Substitutes for $m=0.9$ in any m , v equation obtained earlier.	•
6 ia b	Perp = $10\cos 20$ (= 9.3967 or 9.4) // = $10\sin 20$ (= 3.4202) $\mu = 10\sin 20/10\cos 20 = \tan 20$ (= 3.42/9.4) $\mu = 0.364$ (0.36397) AG	B1 B1 [2] M1 A1 [2]	Includes g, MR -1 in part (i). Accept –ve values. Must use $ F = \mu R $ Accept after inclusion of g twice	
ii	No misread, and resolving of 10 and T required $R = 10\cos 20 + T\cos 45$ $F = T\cos 45 - 10\sin 20$ or $T\cos 45 = \mu R + 10\sin 20$ $T\cos 45 - 3.42 = 0.364(9.4 + T\cos 45)$ 0.707T - 3.42 = 3.42 + 0.257T 0.45T = 6.84 T = 15.2 N (15.209)	M1* A1 M1* A1 D*M1 A1 A1 [7]	3 term equation perp plane, 2 unknowns 9.4 + 0.707 <i>T</i> (accept 9.4+.71 <i>T</i>) 3 term equation // plane, 2 unknowns 0.707 <i>T</i> - 3.42 (accept 0.71 <i>T</i> - 3.4) Substitutes for <i>F</i> and <i>R</i> in <i>F</i> =0.364 <i>R</i> <i>Award final A1 only for T</i> = 149 N after using 10g for weight	

			www.mi
4728	Mark S	cheme	June 20
7 i	$a = \frac{dv}{dt}$ a = 6 - 2t ms ⁻²	M1 A1 [2]	Differentiation attempt. Answer 6- <i>t</i> implies division by <i>t</i>
ii	$s = \int v dt$ $s = \int 6t - t^{2} dt$ $s = 3t^{2} - t^{3}/3 (+c)$ t = 0, v = 0, c = 0 $t = 3, s = 3x3^{2} - 3^{3}/3$ s = 18 m AG	M1* A1 B1 D*M1 A1 [5]	Integration attempt on v Award if limits 0,3 used Requires earlier integration Does not require B1 to be earned.
iii	Distance remaining (= $100 - 18$) = 82 Total time = $3 + 82/9$ $T = 12.1$ s ($12 \ 1/9$)	B1 M1 A1 [3]	Numerator not 100 Not 109/9
iv	Distance before slows = $18 + (22 - 3)x9$ Distance while decelerating = $200 - 189 = 11$ $11 = 9t - 0.3t^2$ or $11 = (9+8.23)t/2$ or $8.23 = 9-0.6t$ t = 1.28 (1.2765, accept 1.3) T = 23.3 s (23.276)	M1* A1 D*M1 A1 D*M1 A1 A1 [7]	(=189 m) Two sub-regions considered Accept 10.99. 10.9 penalise -1PA. Uses $s = ut - 0.5 \times 0.6t^2$, or $v^2 = u^2 - 2 \times 0.6s$ with s = (u+v)t/2 or $v=u+atFinds t. (If QE, it must have 3 terms andsmaller positive root chosen.)$

WWWW. MY MAN MANNE June 20. Painscioud.com

4729 Mechanics 2

1 (i)	$\frac{1}{2} \times 75 \times 12^2$ or $\frac{1}{2} \times 75 \times 3^2$ (either KE)	B1	M1 $12^2 = 3^2 + 2a \times 180$
	75×9.8×40 (PE)	B1	A1 $a = 0.375$ (3/8)
	$R \times 180$ (change in energy = 24337)	B1	M1 $75 \times 9.8 \times \sin\theta - R = 75a$
	$\frac{1}{2} \times 75 \times 12^2 = \frac{1}{2} \times 75 \times 3^2 + 75 \times 9.8 \times 40 - R \times 180$	M1	A1 <i>R</i> = 135
	R = 135 N	A1 5	(max 4 for no energy) 5
2 (i)	$R = F = P/v = 44\ 000/v = 1400$	M1	
	$v = 31.4 \text{ m s}^{-1}$	A1 2	
(ii)	$44\ 000/v = 1400 + 1100 \times 9.8 \times 0.05$	M1	must have g
		Al	
(***)	$v = 22.7 \text{ m s}^2$	AI 3	
(111)	22 000/10 + 1100×9.8×0.05 - 1400	M1	
	= 1100a	A1	8
	$a = 1.22 \text{ m s}^{-2}$	A1 3	
	1	1	
3 (i)	$\cos\theta = 5/13$ or $\sin\theta = 12/13$ or $\theta = 67.4^{\circ}$	B1	any one of these
		M1	moments about A (ok without 70)
	$0.5 \times F \sin\theta = 70 \times 1.4 + 50 \times 2.8$	A1	$0.5\sin\theta = 0.4615$
	F = 516 N	A1 4	SR 1 for 303 (omission of beam)
(ii)	$F\sin\theta = 120 + Y$ (resolving vertically)	M1	M1/A1 for moments
	Y = 356 their F × 12/13 – 120	A1 🖌	(B) <i>Y</i> ×2.8+1.4×70=2.3×516 ×12/13
	$X = F\cos\theta$ (resolving horizontally)	M1	(C) $0.5 \times Y = 0.9 \times 70 + 2.3 \times 50$
	$X = 198$ their $F \times 5/13$	A1 🖌	(D) $1.2X = 1.4 \times 70 + 2.8 \times 50$
	Force = $\sqrt{(356^2 + 198^2)}$	M1	
	407 or 408 N	A1 6	10

4 (i)	$T = 0.4 \times 0.6 \times 2^2$	M1	
	T = 0.96 N	A1 2	
(ii)	S-T	B1	may be implied
	$S-T=0.1\times0.3\times2^2$	M1	
		A1	
	S = 1.08	A1 4	
(iii)	$v = r\omega$	M1	
	$v_P = 0.6$	A1	
	$v_B = 1.2$	A1	
	$\frac{1}{2} \times 0.1 \times 0.6^{2} + \frac{1}{2} \times 0.4 \times 1.2^{2}$	M1	(0.018 + 0.288) separate speeds
	0.306	A1 5	11
Mun My Marins June 20. Rainscioud.com

5 (i)	$d = (2 \times 6 \sin \pi/4)/3\pi/4$	M1	must be correct formula with rads	5
	d = 3.60	A1 2	AG	
(ii)	$d \cos 45^\circ = 2.55$	B1		
			may be implied	
	$5\overline{x} = 3 \times 3 + 2 \times 2.55$	M1	moments must not have areas	
		A1		
	$\overline{x} = 2.82$	A1	2kg/3kg misread (swap) gives	
	$5 \ \overline{v} = 3 \times 6 + 2 \times (12 + 2.55)$	M1	$(2.73.11.13) \theta = 21.7^{\circ}$	
		A1	(MR - 2) (max 7 for (ii) + (iii))	
	$\bar{v} = 9.42$	A1	SR -1 for \overline{x} . \overline{v} swap	
	· · · · · · · · · · · · · · · · · · ·	7	, , , , , , , , , , , , , , , , , , ,	
(iii)	$\tan\theta = 2.82/8.58$	M1	M0 for their $\overline{x} / \overline{y}$	
	$\theta = 18.2^{\circ}$	A1 2	their $\overline{x}/(18-\overline{y})$	11

6 (i)	$I = 0.9 = 6 \times 0.2 - v \times 0.2$	M1	needs to be mass 0.2
		A1	
	<i>v</i> = 1.5	A1 3	
(ii)	0.6 = (c - b)/6	M1	restitution (allow 1.5 for M1)
		A1	
	$6 \times 0.2 = 0.2b + 0.1c$	M1	momentum (allow 1.5 for M1)
		A1	
	<i>b</i> = 2.8	A1	
	$0.4 \times 5 + 0.2 \times 1.5 = 0.4a + 0.2 \times 6$ or	M1	1st collision (needs their 1.5 for M1)
	$I = 0.9 = -0.4a0.4 \times 5$	A1	
	a = 2.75	A1	
	2.75 < 2.8	M1	compare v 's of A and B (calculated)
	no further collision	A1 10	13

7(i)	$9 = 17\cos 25^\circ \times t$	M1	B1 $y=x\tan\theta-4.9x^2/v^2\cos^2\theta$
	t = 0.584 (or 9/17cos25°)	A1	M1/A1 $y=9$ tan(-25°)-4.9×9 ² /17 ² cos ² 25°
	$d = 17\sin 25^{\circ} \times 0.584 + \frac{1}{2} \times 9.8x \times 0.584^{2} (d$	M1	
	$=ht \log (5.87)$	A1	A1 y = -5.87
	<i>h</i> = 2.13	A1 5	2.13
(ii)	$v_h = 17 \cos 25^\circ$ (15.4)	B1	M1/A1 dy/dx =
	$v_v = 17\sin 25^\circ + 9.8 \times 0.584$ or	M1	$\tan\theta - 9.8x/v^2\cos^2\theta$
	$v_v^2 = (17\sin 25^\circ)^2 + 2 \times 9.8 \times 5.87$		
	$v_{v} = 12.9$	A1	A1 $dy/dx = -0.838$
	$\tan\!\theta = 12.9/15.4$	M1	M1 $\tan^{-1}(838)$
	$\theta = 40.0^{\circ}$ below horizontal	A1 5	or 50.0° to vertical
(iii)	speed = $\sqrt{(12.9^2 + 15.4^2)}$	M1	(20.1)
		A1 🖌	
	$\frac{1}{2}mv^2 = \frac{1}{2}m \times 20.1^2 \times 0.7$	M1	NB 0.3 instead of 0.7 gives 11.0 (M0)
	$v = 16.8 \text{ m s}^{-1}$	A1 4	14

Munu. My Marks and Start Scioud. com

4730 Mechanics 3

1 i	Horiz. comp. of vel. after impact is 4ms ⁻¹	B1	May be implied
	Vert. comp. of vel. after impact is $\sqrt{2^2 + 2^2} = 2 \text{ mod}$	B1	AG
	$\sqrt{5^2 - 4^2} = 3\text{ms}^2$	B1	From $e = 3/6$
	Coefficient of restruction is 0.5	[3]	
ii	Direction is vertically upwards	B1	
	Change of velocity is $3 - (-6)$	M1	From $m(\Lambda_{11}) = 0.2 \times 0$
	Impulse has magintude 2.718	[3]	$F10III m(\Delta V) = 0.3 \times 9$
2 i	Horizontal component is 14N	B1	
		M1	For taking moments for <i>AB</i> about <i>A</i> or <i>B</i> or the midpoint of AB
	$80 \times 1.5 = 14 \times 1.5 + 3Y$ or		of the midpoint of AD
	$3(80 - Y) = 80 \times 1.5 + 14 \times 1.5$ or		
	$1.5(80 - Y) = 14 \times 0.75 + 14 \times 0.75 + 1.5Y$ Vertical component is 33N upwards	AI A1	AG
		[4]	
ii	Horizontal component at C is 14N	B1	May be implied
	[Vertical component at C is $\sqrt{2}$	M1	for using $R^2 = H^2 + V^2$
	$(\pm)\sqrt{50^2 - 14^2}$]		For resolving forces at C vertically
	$[W = (\pm)48 - 33]$ Weight is 15N	[4]	
31	$4 \times 3\cos 60^\circ - 2 \times 3\cos 60^\circ = 2h$	MI A1	For using the p.c.mmtm parallel to l.o.c.
	b = 1.5	A1	
	j component of vel. of $B = (-)3\sin 60^{\circ}$	B1ft	ft consistent sin/cos mix
	$[v = b + (-3 \sin 60)]$		For using $v = b + v_y$
	Speed (3ms ⁻¹) is unchanged	Alft	AG ft - allow same answer following
	[Angle with l.o.c. = $\tan^{-1}(3\sin 60^{\circ}/1.5)$]	M1	consistent sin/cos mix. For using angle = $\tan^{-1}(+u_1/u_2)$
	Aligie 15 00 .	[8]	ft consistent sin/cos mix
ii	$[e(3\cos 60^\circ + 3\cos 60^\circ) = 1.5]$ Coefficient is 0.5	M1 A1ft	For using NEL ft - allow same answer following
		[2]	consistent sin/cos mix throughout.
		_	_

473() Mark S	cheme	June 20	111 Marins
4 i ii	$F - 0.25v^{2} = 120v(dv/dx)$ $F = 8000/v$ $[32000 - v^{3} = 480v^{2}(dv/dx)]$ $\frac{480v^{2}}{v^{3} - 32000} \frac{dv}{dx} = -1$ $\int \frac{480v^{2}}{v^{3} - 32000} dv = -\int dx$ $160 \ln(v^{3} - 32000) = -x (+A)$ $160 \ln(v^{3} - 32000) = -x + 160 \ln 32000$ or $160 \ln(v^{3} - 32000) - 160 \ln 32000 = -500$ $(v^{3} - 32000)/32000 = e^{-x/160}$ Speed of <i>m/c</i> is 32.2ms ⁻¹	M1 A1 B1 M1 A1 [5] M1 A1 M1 A1ft B1ft B1 [6]	For using Newton's second law with $a = v(dv/dx)$ For substituting for <i>F</i> and multiplying throughout by 4 <i>v</i> (or equivalent) AG For separating variables and integrating For using $v(0) = 40$ or $[160 \ln(v^3 - 32000)]^{v}_{40} = [-x]^{500}_{0}$ ft where factor 160 is incorrect but +ve, Implied by $(v^3 - 32000)/32000 = e^{-3.125}$ (or = 0.0439). ft where factor 160 is incorrect but +ve, or for an incorrect non- zero value of <i>A</i>	out.com
5 i	$x_{\text{max}} = \sqrt{1.5^2 + 2^2} - 1.5 (= 1)$ [$T_{\text{max}} = 18 \times 1/1.5$] Maximum tension is 12N	B1 M1 A1 [3]	For using $T = \lambda x/L$	
ii	(a) Gain in EE = $2[18(1^2 - 0.2^2)]/(2 \times 1.5)$ (11.52) Loss in GPE = 2.8mg (27.44m) [$2.8m \times 9.8 = 11.52$] m = 0.42 (b) $\frac{1}{2}mv^2 = mg(0.8) + 2 \times 18 \times 0.2^2/(2 \times 1.5)$ or $\frac{1}{2}mv^2 = 2 \times 18 \times 1^2/(2 \times 1.5) - mg(2)$ Speed at <i>M</i> is 4.24ms ⁻¹	M1 A1 B1 M1 A1 [5] M1 A1ft A1ft [3]	For using $EE = \lambda x^2/2L$ May be scored with correct EE terms in expressions for total energy on release and total energy at lowest point May be scored with correct GPE terms in expressions for total energy on release and total energy at lowest point For using the p.c.energy AG For using the p.c.energy KE, PE & EE must all be represented ft only when just one string is considered throughout in evaluating EE ft only for answer 4.10 following consideration of only one string	

4730) Mark S	Scheme	June 20. Mai
6 i	$\begin{bmatrix} -mg\sin\theta = m L(d^2\theta/dt^2) \end{bmatrix}$ $d^2\theta/dt^2 = -(g/L)\sin\theta$	M1 A1 [2]	For using Newton's second law tangentially with $a = Ld^2 \theta/dt^2$ AG
ii	$\begin{bmatrix} d^2 \theta / dt^2 = -(g/L) \theta \end{bmatrix}$ $d^2 \theta / dt^2 = -(g/L) \theta \Rightarrow \text{ motion is SH}$	M1 A1 [2]	For using $\sin \theta \approx \theta$ because θ is small ($\theta_{\text{max}} = 0.05$) AG
iii	$\begin{bmatrix} 4\pi/7 = 2\pi/\sqrt{9.8/L} \\ L = 0.8 \end{bmatrix}$	M1 A1 [2]	For using $T = 2\pi/n$ where $-n^2$ is coefficient of θ
iv	$\begin{bmatrix} \theta = 0.05\cos 3.5 \times 0.7 \end{bmatrix}$ $\theta = -0.0385$ t = 1.10 (accept 1.1 or 1.09)	M1 A1ft M1 A1ft [4]	For using $\theta = \theta_0 \cos nt \{\theta = \theta_0 \sin nt \text{ not accepted unless the } t \text{ is reconciled with the } t \text{ as defined in the question} \}$ ft incorrect $L \{\theta = 0.05 \cos[4.9/(5L)^{\frac{1}{2}}]\}$ For attempting to find $3.5t (\pi < 3.5t < 1.5\pi)$ for which $0.05 \cos 3.5t = \text{answer found for } \theta$ or for using $3.5(t_1 + t_2) = 2\pi$ ft incorrect $L \{t = [2\pi (5L)^{\frac{1}{2}}]/7 - 0.7\}$
v	$\theta^{\square 2} = 3.5^{2}(0.05^{2} - (-0.0385)^{2}) \text{ or}$ $\theta^{\square} = -3.5 \times 0.05 \sin (3.5 \times 0.7) (\theta^{\square} = -0.1116)$ Speed is 0.0893ms ⁻¹ (Accept answers correct to 2 s.f.)	M1 A1ft [3]	For using $\theta^2 = n^2 (\theta_0^2 - \theta^2)$ or $\theta = -n \theta_0 \sin nt$ {also allow $\theta =$ $n\theta_0 \cos nt$ if $\theta = \theta_0 \sin nt$ has been used previously} ft incorrect θ with or without 3.5 represented by $(g/L)^{\frac{1}{2}}$ using incorrect L in (iii) or for $\theta = 3.5 \times 0.05 \cos(3.5 \times 0.7)$ following previous use of $\theta = \theta_0 \sin nt$ ft incorrect L ($L \times 0.089287/0.8$ with n = 3.5 used or from $ 0.35\sin\{4.9/[5L]^{\frac{1}{2}}\}/[5L]^{\frac{1}{2}} $ SR for candidates who use θ as v . (Max 1/3) For $v = \pm 0.112$ B1

			mm. A
4730) Mark S	Scheme	June 20. June 20.
7 i	Gain in PE = $mga(1 - \cos\theta)$ $\left[\frac{1}{2}mu^2 - \frac{1}{2}mv^2 = mga(1 - \cos\theta)\right]$	B1 M1	For using KE loss = PE gain
	$v^{-} = u^{-} - 2ga(1 - \cos \theta)$ $[R - mg \cos \theta = m(\text{accel.})]$ $R = mv^{2}/a + mg \cos \theta$ $[R = m\{ u^{2} - 2ga(1 - \cos \theta)\}/a + mg \cos \theta]$ $R = mu^{2}/a + mg(3\cos \theta - 2)$	A1 M1 A1 M1 A1 [7]	For using Newton's second law radially For substituting for v^2 AG
ii	$[0 = mu^{2}/a - 5mg]$ $u^{2} = 5ag$ $[v^{2} = 5ag - 4ag]$ Least value of v^{2} is ag	M1 A1 M1 A1 [4]	For substituting $R = 0$ and $\theta = 180^{\circ}$ For substituting for u^2 (= 5 <i>ag</i>) and $\theta = 180^{\circ}$ in v^2 (expression found in (i)) { but M0 if $v = 0$ has been used to find u^2 } AG
iii	$\begin{bmatrix} 0 = u^{2} - 2ga(1 - \sqrt{3}/2) \end{bmatrix}$ $u^{2} = ag(2 - \sqrt{3})$	M1 A1 [2]	For substituting $v^2 = 0$ and $\theta = \pi/6$ in v^2 (expression found in (i)) Accept $u^2 = 2ag(1 - \cos \pi/6)$

Munu. My Marksus June 20. Painscioud.com

4731 Mechanics 4

1 (i)	Using $\omega_2^2 = \omega_1^2 + 2 \alpha \theta$, $67^2 = 83^2 + 2\alpha \times 1000$	M1	
	$\alpha = -1.2$	A1	
	Angular deceleration is 1.2 rad s^{-2}	[2]	
(ii)	Using $\theta = \omega_1 t + \frac{1}{2} \alpha t^2$,	M1	
	$400 = 83t - 0.6t^2$	A1ft	
	$t = 5 \text{ or } 133\frac{1}{3}$	M1	Solving to obtain a value of <i>t</i>
	Time taken is 5 s	A1 [4]	
	Alternative for (ii)		(M0 if $\omega = 67$ is used in (ii))
	$\omega_2^2 = 83^2 - 2 \times 1.2 \times 400$ M1A1 ft		
	$\omega_2 = 77$		
	77 = 83 - 1.2t M1		
	t = 5 A1		
2	Volume $V = \int \pi y^2 dx = \int_a^{2a} \pi \frac{a^6}{x^4} dx$	M1	π may be omitted throughout
	$=\pi\left[-\frac{a^{6}}{3x^{3}}\right]_{a}^{2a}=\frac{7}{24}\pi a^{3}$	Al	For integrating x^{-4} to obtain $-\frac{1}{3}x^{-3}$
	$V\overline{x} = \int \pi x y^2 \mathrm{d}x$	M1	for $\int xy^2 dx$
	$=\int_{a}^{2a}\pi \frac{a^{6}}{x^{3}}\mathrm{d}x$	A1	Correct integral form (including limits)
	$= \pi \left[-\frac{a^{6}}{2x^{2}} \right]_{a}^{2a} = \frac{3}{8}\pi a^{4}$	A1	For integrating x^{-3} to obtain $-\frac{1}{2}x^{-2}$
	$\overline{x} = \frac{\frac{3}{8}\pi a^4}{\frac{7}{24}\pi a^3}$	M1	Dependent on previous M1M1
	$=\frac{9a}{7}$	A1 [7]	

			mm	12
4731	Mark Sch	eme	June 20	Arths Arths
3 (i)	$I = \frac{1}{2} (4m)(2a)^2 + (4m)a^2$	M1 A1	Applying parallel axes rule	cloud.c
	$+m(3a)^2$ $= 21ma^2$	B1 A1 [4]		
(ii)	From P, $\bar{x} = \frac{(4m)a + m(3a)}{5m} (= \frac{7a}{5})$	M1 M1	Correct formula $2\pi \sqrt{\frac{I}{mgh}}$ seen	
	Period is $2\pi \sqrt{\frac{2 \ln a^2}{5 mg(\frac{7}{5}a)}}$	A1 ft	or using $L = I \overline{\partial}$ and period $2\pi / \omega$	
	$=2\pi\sqrt{\frac{5a}{g}}$	A1 [4]		
	$-4mga\sin\theta - mg(3a)\sin\theta = (21ma^2)\overline{\theta^{\square}} \qquad M1$ $M1$		Using $L = I \partial^2$ with three terms Using period $2\pi/\omega$	
	Period is $2\pi \sqrt{\frac{21ma^2}{7mga}} = 2\pi \sqrt{\frac{3a}{g}}$ A1 ft A1			

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4731	Μ	ark Sch	eme	June 20.
(ii) Shorter time when $\theta = 56.1^{\circ}$ $\frac{v}{\sin 83.87} = \frac{48}{\sin 40}$ Relative speed is $v = 74.25$ Time to intercept is $\frac{3750}{74.25}$ = 50.5 s Alternative for (i) and (ii) $\begin{pmatrix} 48\sin \phi \\ 48\cos \phi \end{pmatrix} t = \begin{pmatrix} 3750\sin 75 \\ 3750\cos 75 \end{pmatrix} + \begin{pmatrix} 62\sin 295 \\ 62\cos 295 \end{pmatrix} t$ M1 $3.732\cos \phi - \sin \phi = 3.208$ Alternative for $v = 3.208$ M1 $\phi = 18.9^{\circ}$ and 311.1° $\phi = 18.9^{\circ}$ and 311.1° $\phi = 18.9^{\circ}$ and 311.1° begin the second state in the	4 (i)	$\frac{\sin \theta}{62} = \frac{\sin 40}{48}$ $\theta = 56.1^{\circ} \text{ or } 123.9^{\circ}$ Bearings are 018.9° and 311.1°	-8	M1 M1 A1 A1A 1 [5]	Velocity triangle One value sufficient Accept 19° and 311°
Alternative for (i) and (ii)[4] $\begin{pmatrix} 48 \sin \phi \\ 48 \cos \phi \end{pmatrix} t = \begin{pmatrix} 3750 \sin 75 \\ 3750 \cos 75 \end{pmatrix} + \begin{pmatrix} 62 \sin 295 \\ 62 \cos 295 \end{pmatrix} t$ M1M1Obtaining eqn in $\phi \text{ or } t \text{ or } v \ (=3750/t)$ $3.732 \cos \phi - \sin \phi = 3.208$ A1 $3.732 \cos \phi - \sin \phi = 3.208$ A1 $\phi = 18.9^{\circ}$ and 311.1° M1 $\phi = 18.9^{\circ}$ and 311.1° M1A1 $\phi = 18.9^{\circ}$ and 311.1° $\phi = 18.9^{\circ}$	(ii)	Shorter time when $\theta = 56.1^{\circ}$ $\frac{v}{\sin 83.87} = \frac{48}{\sin 40}$ Relative speed is $v = 74.25$ Time to intercept is $\frac{3750}{74.25}$ = 50.5 s		B1 ft M1 M1 A1	Or $v^2 = 62^2 + 48^2 - 2 \times 62 \times 48 \cos 83.87$ Dependent on previous M1
D10		Alternative for (i) and (ii) $\begin{pmatrix} 48\sin\phi\\ 48\cos\phi \end{pmatrix} t = \begin{pmatrix} 3750\sin75\\ 3750\cos75 \end{pmatrix} + \begin{pmatrix} 62\sin295\\ 62\cos295 \end{pmatrix}$ 3.732 cos ϕ - sin ϕ = 3.208 ϕ = 18.9° and 311.1°	t M1 M1 A1 M1 M1 A1A1	[4]	component eqns (displacement or velocity) obtaining eqn in ϕ or t or v (=3750/t) correct simplified equation or $t^2 - 231.3t + 9131.5 = 0$ [t = 50.5, 180.8] or $v^2 - 94.99v + 1540 = 0$ [v = 74.25, 20.74] solving to obtain a value of ϕ solving to obtain a value of t (max A1 if any extra values given) appropriate selection for shorter time

			www.mys	134
4731	Mark Sch	ieme	June 20.	athso
5 (i)	Area is $\int_{0}^{2} (8 - x^{3}) dx = \left[8x - \frac{1}{4}x^{4} \right]_{0}^{2} = 12$	B1		
	Mass per m ² is $\rho = \frac{63}{12} = 5.25$	M1		
	$I_y = \sum (\rho y \delta x) x^2 = \rho \int x^2 y \mathrm{d} x$	M1	for $\int x^2 y dx$ or $\int x^3 dy$	
	$=\rho\int_0^2 (8x^2 - x^5)\mathrm{d}x$	A1	or $\frac{1}{3}\rho \int_{0}^{8} (8-y) \mathrm{d}y$	
	$= \rho \left[\frac{8}{3} x^3 - \frac{1}{6} x^6 \right]_0^2 = \frac{32}{3} \rho$	A1	for $\frac{32}{3}$	
	$= \frac{32}{3} \times \frac{63}{12} = 56 \text{ kg m}^2$	A1 AG		
(ii)	Anticlockwise moment is $800-63 \times 9.8 \times \frac{4}{5}$	M1		
	= 306.08 N m > 0so it will rotate anticlockwise	A1	Full explanation is required; (anti)clockwise should be mentioned	
()		[2]	before the conclusion	
(111)	$\begin{bmatrix} I = I_x + I_y = 1050.8 + 50 & (= 1092.8) \\ WD \text{ by couple is } 800 \times \frac{1}{2}\pi \end{bmatrix}$			
	Change in PE is $63 \times 9.8 \times \left(\frac{24}{7} - \frac{4}{5}\right)$	B1		
	$800 \times \frac{1}{2}\pi = \frac{1}{2}I\omega^2 - 63 \times 9.8 \times \left(\frac{24}{7} - \frac{4}{5}\right)$	M1 A1	Equation involving WD, KE and PE May have an incorrect value for I;	
	$\omega = 2.30 \text{ rad s}^{-1}$	A1 [6]	oiner terms and signs are cao	

			mm	1
4731	Mark Sc	heme	June 20	A Maths
				Cloud.
6 (i)	GPE is $mg(a \sin 2\theta)$	B1	Or $mg(2a\cos\theta\sin\theta)$	-On
	$AB = 2a\cos\theta \text{ or } AB^{-} = a^{-} + a^{-} - 2a^{-}\cos(\pi - 2\theta)$			
	EPE is $\frac{\sqrt{3}mg}{2a}(2a\cos\theta)^2$	B1	Any correct form	
	$=\sqrt{3}mga(1+\cos 2\theta)$	M1	Expressing EPE and GPE in terms of $\cos 2\theta$ and $\sin 2\theta$	
	Total PE is $V = \sqrt{3}mga(1 + \cos 2\theta) + mga\sin 2\theta$			
	$= mga(\sqrt{3} + \sqrt{3}\cos 2\theta + \sin 2\theta)$	A1		
		AG [4]		
(ii)	$\frac{\mathrm{d}V}{\mathrm{d}\theta} = mga(-2\sqrt{3}\sin 2\theta + 2\cos 2\theta)$	B1	(B0 for $\frac{dV}{d\theta} = -2\sqrt{3}\sin 2\theta + 2\cos 2\theta$)	
	= 0 when $2\sqrt{3}\sin 2\theta = 2\cos 2\theta$	M1		
	$\tan 2\theta = \frac{1}{\sqrt{3}}$			
	$\theta = \frac{\pi}{12}, -\frac{5\pi}{12}$	M1 A1A1	Solving to obtain a value of θ Accept 0.262, -1.31 or 15°, -75°	
(:::)	.2	[5]		
(111)	$\frac{\mathrm{d}^2 V}{\mathrm{d}\theta^2} = mga(-4\sqrt{3}\cos 2\theta - 4\sin 2\theta)$	B1ft		
	When $\theta = \frac{\pi}{12}$, $\frac{\mathrm{d}^2 V}{\mathrm{d}\theta^2} = -8mga < 0$	M1	Determining the sign of <i>V</i> " <i>or</i> M2 for alternative method for max / min	
	so this position is unstable	A1		
	When $\theta = -\frac{5\pi}{12}$, $\frac{d^2V}{d\theta^2} = 8mga > 0$			
	so this position is stable	A1		
		[4]		

			mm	1-50
4731	Mark S	Scheme	June 20	nathsciou
7 (i)	Initially $\cos\theta = \frac{0.6}{1.5} = 0.4$ $\frac{1}{2} \times 4.9 \ \omega^2 = 6 \times 9.8(0.5 \times 0.4 - 0.5 \cos \theta)$ $\omega^2 = 12(0.4 - \cos \theta)$ $\omega^2 = 4.8 - 12 \cos \theta$	M1 A1 A1 AG [3]	Equation involving KE and PE	
(ii)	$6 \times 9.8 \times 0.5 \sin \theta = 4.9 \alpha$ $\alpha = 6 \sin \theta (rad s^{-2})$	M1 A1 [2]	or $2\omega \frac{d\omega}{d\theta} = 12\sin\theta$ or $2\omega \frac{d\omega}{dt} = 12\sin\theta \frac{d\theta}{dt}$	
(iii)	$6 \times 9.8 \cos \theta - F = 6 \times 0.5 \omega^{2}$ $58.8 \cos \theta - F = 14.4 - 36 \cos \theta$ $F = 94.8 \cos \theta - 14.4$ $6 \times 9.8 \sin \theta - R = 6 \times 0.5 \alpha$ $58.8 \sin \theta - R = 18 \sin \theta$ $R = 40.8 \sin \theta$	M1 M1 A1 AG M1 M1 A1 [6]	for radial acceleration $r \omega^2$ radial equation of motion <i>Dependent on previous M1</i> for transverse acceleration $r \alpha$ transverse equation of motion <i>Dependent on previous M1</i>	
(iv)	If <i>B</i> reaches the ground, $\cos \theta = -0.4$ F = -52.32 $\sin \theta = \sqrt{0.84} \ [\ \theta = 1.982 \ or \ 113.6^{\circ}] R = 37.39$ Since $\frac{52.32}{37.39} = 1.40 > 0.9$, this is not possible <i>Alternative for (iv)</i> Slips when $F = -0.9R$ $94.8\cos\theta - 14.4 = -36.72\sin\theta$ M1 $\theta = 1.798 \ [103.0^{\circ}]$ A1 <i>B</i> reaches the ground when $\cos\theta = -0.4$ M1 $\theta = 1.982 \ [113.6^{\circ}]$ so it slips before this A1	M1 A1 M1 A1 [4]	Allow MIA0 if $\cos \theta = +0.4$ is used Obtaining a value for R Or $\mu R = 33.65$, and $52.32 > 33.65$ Allow MIA0 if $F = +0.9 R$ is used Allow MIA0 if $\cos \theta = +0.4$ is used	-

4732 Probability & Statistics 1

1			Q1: if consistent "0.8" incorrect or $\frac{1}{8}$, $\frac{7}{8}$ or
			0.02 allow M marks in ii , iii & 1 st M1 in i
i	Binomial stated	M1	or implied by use of tables or ${}^{8}C_{3}$
			or $0.2^{a} \times 0.8^{b}$ $(a+b=8)$
	$0.9437 - 0.7969$ or ${}^{8}C_{3} \times 0.2^{3} \times 0.8^{5}$	M1	
	= 0.147 (3 sfs)	A1 3	
ii	1-0.7969	M1	allow 1– 0.9437 or 0.056(3)
			or equiv using formula
	= 0.203 (3 sf)	A1 2	
111	8×0.2 oe	MI	$8 \times 0.2 = 2$ M1A0
	1.6	A1 2	$1.6 \div 8 \text{ or } /_{1.6} \text{MOA0}$
T-4-1		-	
	East true $J^2 = \pm 1$	D1	C = 20 D1
2	$\sum_{n=1}^{\infty} attempted \qquad (-2)$	DI M1	S_{xx} OI $S_{yy} - 28$ DI S - 27 D1
	2a altempted (-2)	Midan	$S_{xy} = 27$ DI $S_{xy} = 27$ DI
	$\begin{bmatrix} 1-\underline{0 \times 2}\\ 7(7^2 - 1) \end{bmatrix}$	Mildep	$S_{xy} / (S_{xx}S_{yy})$ will dep B1
	$\frac{7(7-1)}{2^{27}/2} = \frac{27}{2} \cos 0.964 (3 \text{ sfs})$	A 1	$1234567 \ \& 1276543 \ (ans^{2}/_{-}) \ MR \ lose \ A1$
	-7_{28} or 0.904 (3 S1S)		$1234507 \approx 1270345$ (ans 77). Wire, lose A1
Total		4	
3 i	x independent or controlled or changed	B1 1	Allow Water affects yield or yield is
•	······································		dependent
	Value of <i>y</i> was measured for each x		or yield not control water supply
	x not dependent		Not just v is dependent
			Not x goes up in equal intervals
			Not x is fixed
ii	(line given by) minimum	B1	B1 for "minimum" or "least squares" with
	sum of squs	B1 2	inadequate or no explanation
iii	$S_{xx} = 17.5$ or 2.92		or $91 - 21^{2}/_{6}$
	$S_{yy} = 41.3$ or 6.89	B1	or $394 - 46^{2}/_{6}$ B1 for any one
	$S_{xy} = 25$ or 4.17		$ \text{ or } 186 - \frac{21040}{6} $
	$r = \frac{S_{xy}}{1 - (x - x)}$	M1	dep B1
	$\bigvee (S_{xx}S_{yy}) = 0.020 (2.5)$	A 1 2	
	= 0.930 (3 sI)	AI 3	0.929 or 0.93 with or without wking
			BIMIAU SC incompation man D11(14.0
			SU incorrect n: max B1M1A0
	Near 1 or la high strong good corr'n or		
IV	relashin oe	B1ff	r small: allow little (or no) corr'n oe
	ionismp oc		
	Close to st line or line good fit	B1 2	Not line accurate Not fits trend
Total		8	
	1		1

			mm n	
4732	Mark S	cheme	June 20. Theirs	55
4			Q4: if consistent "0.7" incorrect or $\frac{1}{3}$, $\frac{2}{3}$ or 0.03 allow M marks in ii , iii & 1 st M1 in i	Y.CO
i	Geo stated $0.7^3 \times 0.3$ alone 1029/10000 or 0.103 (3 sf)	M1 M1 A1 3	or implied by $q^n \times p$ alone $(n > 1)$ $0.7^3 - 0.7^4$	1
ii	$\begin{array}{c} 0.7^4 \text{ alone} \\ = \frac{2401}{_{10000}} \text{ or } 0.240 \text{ (3 sf)} \end{array}$	M1 A1 2	$\begin{array}{c} 1 - (0.3 + 0.7 \times 0.3 + 0.7^2 \times 0.3 + 0.7^3 \times 0.3) \\ \text{NB } 1 - 0.7^4 : \text{M0} \end{array}$	
iii	$1 - 0.7^5$	M2	or $0.3 + 0.7 \times 0.3 + + \dots + 0.7^4 \times 0.3$ M2 M1 for one term extra or omitted or wrong or for 1– (above) M1 for 1– 0.7^6 or 0.7^5	
	= 0.832 (3 sfs)	A1 3	NB Beware: $1 - 0.7^6 = 0.882$	
		8		
5i	$ ^{25}/_{10}$ = 2.5	M1 A1 2	Allow $^{25}/_{(9to10)}$ or 2.78: M1	
ii	(19.5, 25) (9.5, 0)	B1 B1 2	Allow (24.5, 47) Both reversed: SC B1 If three given, ignore (24.5, 47)	
iii	Don't know exact or specific values of x (or min or max or quartiles or median or whiskers).oeCan only estimate (min or max or quartiles or median or whiskers)oeCan't work out ()oeData is grouped oe	B1 1	Exact data not known Allow because data is rounded	
Total		5		

			WWW. D. MIL
4732	Mark Sch	ieme	June 20. Jun
6i	$\sum_{x \neq 11} \sum_{x \neq 11$	M1 A1 M1 A1 4	$\geq 5 \text{ terms, or } \Sigma(x-\overline{x})^2$ or $\sqrt{\frac{\Sigma(x-\overline{x})^2}{11}} = \sqrt{310}/_{11} \text{ or } \sqrt{28.18}$ ie correct substn or result If $\times \frac{11}{10}$: M1A1M1A0
ii	Attempt arrange in order med = 67 74 and 66 IQR = 8	M1 A1 M1 A1 4	or $(72.5 - 76.5) - (65.5 - 66.5)$ incl must be from 74 - 66
iii	no (or fewer) extremes this year oe sd takes account of all values sd affected by extremes less spread tho' middle 50% same less spread tho' 3 rd & 9 th same or same gap	B1 1	fewer high &/or low scores highest score(s) less than last year Not less spread or more consistent Not range less
iv	sd measures spread or variation or consistency oe	B1 1	sd less means spread is less oe or marks are closer together oe
V	more consistent, more similar, closer together, nearer to mean less spread	B1 1	allow less variance Not range less Not highest & lowest closer
Total		11	
7i	${}^{8}C_{3} = 56$	M1 A1 2	
ii	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 M1 A1 3	$\begin{array}{c ccccc} {}^{8}C_{1}+{}^{7}C_{1}+{}^{6}C_{1} \text{ or } 21 & {}^{7}\!/_{8} \times {}^{6}\!/_{7} \times {}^{5}\!/_{6} \\ \text{or } {}^{8}\!\times {}^{7}\!/_{7} \times {}^{6}\!/_{6} \\ \text{indep, dep ans } < 1 & 1-\text{prod 3 probs} \end{array}$
iii	⁸ P ₃ or 8×7×6 or ${}^{8}C_{1} \times {}^{7}C_{1} \times {}^{6}C_{1}$ or 336 $1 \div {}^{8}P_{3}$ only $= {}^{1}/{}_{336}$ or 0.00298 (3 sf)	M1 M1 A1 3	$ \frac{1}{1/8} \times \frac{1}{7} \times \frac{1}{6} \text{ only } M2 \text{If } \times \text{ or } \div: M1 \\ (\frac{1}{8})^3 M1 $
Total		8	
L	1	-	

			mm 1	S
4732	Mark S	cheme	June 20. June 20.	Math
8ia	$^{18}/_{19}$ or $^{1}/_{19}$ seen $^{17}/_{18}$ or $^{11}/_{18}$ seen structure correct ie 6 branches all correct incl. probs and W & R	B1 B1 B1 B1 4	regardless of probs & labels (or 14 branches with correct 0s & 1s)	1040
b	$\frac{1}{20} + \frac{19}{20} \times \frac{1}{19} + \frac{19}{20} \times \frac{18}{19} \times \frac{1}{18}$ $= \frac{3}{20}$	M2 A1 3	M1 any 2 correct terms added $\begin{bmatrix} 19/_{20} \times 18/_{19} \times 17/_{18} \\ 1 - \frac{19}/_{20} \times 18/_{19} \times 17/_{18} \end{bmatrix}$	
iia		M1 A1 2	$\frac{19}{20} \times \frac{18}{19} \times \frac{1}{18} + \frac{19}{20} \times \frac{18}{19} \times \frac{17}{18} \text{ or } \frac{1}{20} + \frac{17}{20}$	
b	$ (P(X=1) = \frac{1}{20}) = \frac{1}{20} = \frac{1}{20}$	M1 A1	or $1 - (\frac{1}{20} + \frac{9}{10})$ or 2 probs of $\frac{1}{20}$ M1A1	
	$\sum xp_{=57/20}$ or 2.85	M1 A1 4	\geq 2 terms, ft their <i>p</i> 's if $\Sigma p = 1$ NB: ¹⁹ / ₂₀ ×3 = 2.85 no mks	
			With replacement:	1
ia ib			Original scheme $\frac{1}{20} + \frac{19}{20} \times \frac{1}{20} + \frac{19}{20}^2 \times \frac{1}{20}$ or $1 - \frac{19}{20}^2$ M1	E
iia			$\int \frac{(19/20)^2}{(19/20)^2} or \frac{(19/20)^2 \times 1/20}{(19/20)^2} + \frac{(19/20)^2 \times 19/20}{M1} M1$	
b			Original scheme But NB ans 2.85(25) M1A0M1A0	
Total		13		1

				mm. n. m
4732		Mark S	cheme	June 20 June 20
9i ii	$(1 - 0.12)^{n}$ $\frac{\log 0.05}{\log 0.88}$ $n = 24$ $^{6}C_{2} \times 0.88^{4} \times 0.12^{2}$ $\times 0.12$ $= 0.0155$	or 0.88 ²³ = 0.052 or 0.88 ²⁴ = 0.046 (= 0.1295)	M1 M1 A1 3 M3 M1 A1 5	Can be implied by $2^{nd} M1$ allow $n-1$ or $\log_{0.88} 0.05$ or $23.4()$ Ignore incorrect inequ or equals signs or $0.88^4 \times 0.12^2$ M2 or ${}^6C_2 \times 0.88^4 \times 0.12^2$ + extra M2 or 2 successes in 6 trials implied or 6C_2 M1 $dep \ge M1$ $0.88^4 \times 0.12^2 \times 0.12$: M2M1 $0.88^4 \times 0.12^3$ M0M0A0 unless clear P(2 success in 6 trials) $\times 0.12$ in which case M2M1A0
Total			8	

Total 72 marks

Munu. My Ma Masus June 20. Painscioud.com

4733 Probability & Statistics 2

1	$\frac{105.0 - \mu}{\sigma} = -0.7; \frac{110.0 - \mu}{\sigma} = -0.5$ Solve: $\sigma = 25$ $\mu = 122.5$	M1 A1 B1 M1 A1 A1	6	Standardise once, equate to Φ^{-1} , allow σ^2 Both correct including signs & σ , no cc (continuity correction), allow wrong z Both correct z-values. "1 –" errors: M1A0B1 Get either μ or σ by solving simultaneously σ a.r.t. 25.0 $\mu = 122.5 \pm 0.3$ or 123 if clearly correct, allow from σ^2 but <i>not</i> from $\sigma = -25$.
2	Po(20) ≈ N(20, 20) Normal approx. valid as $\lambda > 15$ $1-\Phi\left(\frac{24.5-20}{\sqrt{20}}\right) = 1-\Phi(1.006)$ = 1 - 0.8427 = 0.1573	M1 A1 B1 M1 A1 A1	6	Normal stated or implied (20, 20) or (20, $\sqrt{20}$) or (20, 20^2), can be implied "Valid as $\lambda > 15$ ", or "valid as λ large" Standardise 25, allow wrong or no cc, $\sqrt{20}$ errors $1.0 < z \le 1.01$ Final answer, art 0.157
3	H ₀ : $p = 0.6$, H ₁ : $p < 0.6$ where p is proportion in population who believe it's good value $R \sim B(12, 0.6)$ α : P($R \le 4$) = 0.0573 > 0.05 β : CR is ≤ 3 and $4 > 3$ p = 0.0153	B2 M1 A1 B1 B1 A1		Both, B2. Allow π , % One error, B1, except <i>x</i> or \overline{x} or <i>r</i> or <i>R</i> : 0 B(12, 0.6) stated or implied, e.g. N(7.2, 2.88) <i>Not</i> P(< 4) or P(≥ 4) or P(= 4) Must be using P(≤ 4), or P(> 4) < 0.95 and binomial Must be using CR; explicit comparison needed
	Do not reject H_0 . Insufficient evidence that the proportion who believe it's good value for money is less than 0.6	A1	7	Correct conclusion, needs B(12,0.6) and ≤ 4 Contextualised, some indication of uncertainty [SR: N(7.2,) or Po(7.2): poss B2 M1A0] [SR: P(< 4) or P(= 4) or P(≥ 4): B2 M1A0]
4 (i)	Eg "not all are residents"; "only those in street asked"	B1 B1	2	One valid relevant reason A definitely different valid relevant reason <i>Not</i> "not a random sample", <i>not</i> "takes too long"
(ii)	Obtain list of whole population Number it sequentially Select using random numbers [Ignore method of making contact]	B1 B1 B1	3	"Everyone" or "all houses" must be implied Not "number it with random numbers" unless then "arrange in order of random numbers" SR: "Take a random sample": B1 SR: Systematic: B1 B0, B1 if start randomly chosen
(iii)	Two of: α : Members of population equally likely to be chosen β : Chosen independently/randomly γ : Large sample (e.g. > 30)	B1 B1	2	One reason. NB : If "independent", must be "chosen" independently, not "views are independent" Another reason. Allow "fixed sample size" but not both that and "large sample". Allow "houses"

			mm n
4733	Ma	irk Sche	me June 20 June 20
5 (i)	Bricks scattered at constant average rate & independently of one another	B1 B1 2	B1 for each of 2 different reasons, in context. (Treat "randomly" ≡ "singly" ≡ "independently")
(ii)	Po(12) $P(\le 14) - P(\le 7) = .77200895$ [or P(8) + P(9) + + P(14)]	B1 M1	Po(12) stated or implied Allow one out at either end or both, eg 0.617, or wrong column, but <i>not</i> from Po(3) nor, eg, .9105 – .7720
(iii)	$e^{-\lambda} = 0.4$ $\lambda = -\ln (0.4)$ = 0.9163 Volume = 0.9163 ÷ 3 = 0.305	B1 M1 A1 M1 4	This equation, aef, can be implied by, eg 0.9 Take ln, or 0.91 by T & I λ art 0.916 or 0.92, can be implied Divide their λ value by 3 [SR: Tables, eg 0.9÷3: B1 M0 A0 M1]
6 (i)	$33.6 \\ \frac{115782.84}{100} - 33.6^{2} \ [= 28.8684] \\ \times \frac{100}{99} = 29.16$	B1 M1 M1 A1 4	33.6 clearly stated [not recoverable later] Correct formula used for biased estimate $\times \frac{100}{99}$, M's independent. Eg $\frac{\Sigma r^2}{99}$ [-336 ²] SR B1 variance in range [29.1, 29.2]
(ii)	$\overline{R} \sim N(33.6, 29.16/9)$ = N(33.6, 1.8 ²) 1- $\Phi\left(\frac{32-33.6}{\sqrt{3.24}}\right)$ [= $\Phi(0.8889)$] = 0.8130	M1 A1 M1 A1 4	Normal, their μ stated or implied Variance [their (i)]÷9 [not ÷100] Standardise & use Φ , 9 used, answer > 0.5, allow $\sqrt{\text{ errors}}$, allow cc 0.05 but not 0.5 Answer, art 0.813
(iii)	No, distribution of <i>R</i> is normal so that of \overline{R} is normal	B2 2	Must be saying this. Eg "9 is not large enough": B0. Both: B1 max, unless saying that <i>n</i> is irrelevant.
7 (i)	$\frac{2}{9} \int_{0}^{3} x^{3} (3-x) dx = \frac{2}{9} \left[\frac{3x^{4}}{4} - \frac{x^{5}}{5} \right]_{0}^{3} [= 2.7] - (1\frac{1}{2})^{2} = \frac{9}{20} \text{ or } 0.45$	M1 A1 B1 M1 A1 5	Integrate $x^2 f(x)$ from 0 to 3 [not for μ]Correct indefinite integralMean is 1½, soiSubtract their μ^2 Answer art 0.450
(ii)	$\frac{2}{9} \int_{0}^{0.5} x(3-x) dx = \frac{2}{9} \left[\frac{3x^2}{2} - \frac{x^3}{3} \right]_{0}^{0.5}$ $= \frac{2}{27} \text{ AG}$	M1 A1 2	Integrate $f(x)$ between 0, 0.5, must be seen somewhere Correctly obtain given answer $\frac{2}{27}$, decimals other than 0.5 not allowed, 1 more line needed (eg [] = $\frac{1}{3}$)
(iii)	$B(108, \frac{2}{27})$ $\approx N(8, 7.4074)$ $1 - \Phi\left(\frac{9.5 - 8}{\sqrt{7.4074}}\right)$ $= 1 - \Phi(0.5511)$ = 0.291	B1 M1 A1 M1 A1 A1 A1 6	B(108, $\frac{2}{27}$) seen or implied, eg Po(8) Normal, mean 8 variance (or SD) 200/27 or art 7.41 Standardise 10, allow √ errors, wrong or no cc, needs to be using B(108,) Correct √ and cc Final answer, art 0.291

4733]	Ma	ark Sche	me June 20. Normal NB: <i>not</i> part (iii)
(1	1V)	$X \sim N(1.5, \frac{1}{240})$	$\begin{vmatrix} B1 \\ B1 \\ B1 \\ \end{bmatrix}$	Mean their μ Variance or SD (their 0.45)/108 [not (8, 50/729)]
8 (i	i)	H ₀ : $\mu = 78.0$ H ₁ : $\mu \neq 78.0$ $z = \frac{76.4 - 78.0}{\sqrt{68.9/120}} = -2.1115$ > -2.576 or 0.0173 > 0.005 $78 \pm z\sqrt{(68.9/120)}$ = 76.048 76.4 > 76.048 Do not reject H ₀ . Insufficient evidence that the mean time has changed	B1 B1 M1 A1 B1 M1 A1 $$ B1 M1	Both correct, B2. One error, B1, but x or \overline{x} : B0. Needs $\pm (76.4 - 78)/\sqrt{(\sigma \div 120)}$, allow $\sqrt{\text{errors}}$ art -2.11, or $p = 0.0173 \pm 0.0002$ Compare z with (-)2.576, or p with 0.005 Needs 78 and 120, can be - only Correct CV to 3 sf, $\sqrt{\text{ on } z}$ $z = 2.576$ and compare 76.4, allow from 78 \leftrightarrow 76.4 Correct comparison & conclusion, needs 120, "like with like", correct tail, \overline{x} and μ right way round Contextualised, some indication of uncertainty
(i	ii)	$\frac{1}{\sqrt{68.9/n}} > 2.576$ $\sqrt{n} > 21.38,$ $n_{\min} = 458$ Variance is estimated	M1 M1 A1 B1 4	IGNORE INEQUALITIES THROUGHOUT Standardise 1 with <i>n</i> and 2.576, allow $\sqrt{\text{errors}}$, cc etc but <i>not</i> 2.326 Correct method to solve for \sqrt{n} (<i>not</i> from <i>n</i>) 458 only (<i>not</i> 457), <i>or</i> 373 from 2.326, signs correct Equivalent statement, allow "should use <i>t</i> ". In principle nothing superfluous, but "variance stays same" B1 bod

4733

WWWW. MY MAN MANNE June 20. Painscioud.com

Specimen Answers

Ques	stion 4: Part (i)	
α	Takes too long/too slow	B0
β	Interviewing people in the street isn't a random sample	B0
γ	Many tourists so not representative	B1
δ	Those who don't shop won't have their views considered	B1
3	Interviewers biased as to who they ask	B1
ζ	Views influenced by views of others	B1

Part (ii)		
α	Choose a random sample of the town and ask their opinion	B1
β	Choose names at random from the town's phone book	B1
γ	A random number machine determines which house numbers should be used, and every street should have the same proportion of residents interviewed	B0B0B1
δ	Visit everyone door to door and give them a questionnaire	B1B0B0
3	Assign everyone a number and select randomly	B1B0B0
ζ	Assign everyone a number and select using random numbers	B1B0B1
η	Ditto + "ignoring numbers that don't correspond to a resident"	B1B1B1
θ	Assign each eligible person a number and pick numbers from a hat	B1B1B0
ι	Put names of all residents into a hat and pick them out	B1B1B0
	[NB: postal survey is biased]	

Part (iii))	
α	One person's view should not affect another's	B0
β	It is without bias	B0
γ	Results occur randomly	B0
δ	Should be asked if they are for or against (binomial testing)	B0
3	It will survey a diverse group from different areas so should be representative	B0
ζ	Everyone's should be chose independently of everyone else	B1
η	The sample size must be large	B1
θ	Participants are chosen at random and independently from one another	B1 only
	[though $\eta \& \theta$ together would get B2]	

Question 5 (i)

α	Number of bricks must always be the same		B0
β	Results occur randomly		B0
γ	The chance of a brick being in one place is always the s	ame	B0
δ	Events must occur independently and at constant average	ge rate	B0
3	They must occur independently and at constant average	rate	B1 only
ζ	Bricks' locations must be random and independent	[effectively the same]	B1 only
η	Only one brick in any one place; bricks independent	[effectively the same]	B1 only

4734 Probability & Statistics 3

Penalise 2 sf instead of 3 once only. Penalise final answer ≥ 6 sf once only.

1	(i)	$\int_{0}^{1} \frac{2}{5} x^{2} dx + \int_{1}^{4} \frac{2}{5} \sqrt{x} dx$	M1	Atten limits	npt to integrate $xf(x)$, both parts added,
		$= \left[\frac{2x^{3}}{12}\right]^{1} + \left[\frac{4x^{3/2}}{12}\right]^{4} = 2$	A1	Corre	ct indefinite integrals
			A1 3	Corre	ct answer
	(ii)	$\int_{-\infty}^{4} \frac{2}{\sqrt{2}} dx = \left[\frac{4\sqrt{x}}{5}\right]^{4} = \frac{4}{5}(2-\sqrt{2}) \text{ or } 0.4686$	M1	Attent if $\mu <$	npt correct integral, limits; needs "1 –" 1
		$5^{2} 5\sqrt{x} \begin{bmatrix} 5 \end{bmatrix}_{2}^{2} 5$	A1 A1	Corre Exact	ect indefinite integral, $$ on their μ a ef, or in range [0.468, 0.469]
2	(i)	Po(0.5), Po(0.75)	M1	0.5, 0	.75 scaled
		Po(0.7) and Po(0.9) $A + B \sim Po(1.6)$	Al M1	These Sum o	e of Poissons used can have wrong
		<i><i>I</i> + <i>D</i> = 10(1.0)</i>	1011	paran	neters
		$P(A + B \ge 5) = 0.0237$	A1	0.023	7 from tables or calculator
		B(20, 0.0237) 0.9763 ²⁰ + 20×0.9763 ¹⁹ ×0.0237	MII $\Delta 1$	Binor	nial (20, their p), solution their p
		= 0.9195	A1	Answ	ver in range [0.919, 0.92]
	····>				
	(11)	<i>or</i> sample should be random	BI .	Any v	xtualised
		······································			
3	(i)	Sample mean = 6.486 $s^2 = 0.00073$	B1 B1	0.000	584 if divided by 5
		0.00073	M1	Calcu	so that a video by 5 late sample mean $\pm ts/\sqrt{5}$, allow 1.96, s^2
		$6.486 \pm 2.776 \times \sqrt{-5}$		etc	
		(6.45, 6.52)	BI A1A1	t = 2.7 Each	776 seen
				Luch	(0.15210, 0.5175)
	(ii)	$2\pi \times \text{above}$ [= (40.5, 41.0)]	M1 3		
4	(i)	H ₀ : $p_1 = p_2$; H ₁ : $p_1 \neq p_2$, where p_i is the proportion of all solvers of puzzle <i>i</i>	B1	Both	hypotheses correctly stated, allow eg \hat{p}
		Common proportion 39/80	M1A1	[= 0.4	1875]
		$s^2 = 0.4875 \times 0.5125 / 20$	B1 M1	[= 0.0]	$01249, \sigma = 0.11176$]
		$(\pm)\frac{0.6-0.375}{(\pm)}=(\pm)2.013$	MI A1√	$(0.6 - \Delta)$	-0.3/5)/s x 2.066 $\sqrt{100}$ from unpooled variance $n = 100$
		0.1117	'	0.019	5
		2.013 > 1.96, or 0.022 < 0.025	M1	Corre	ect method and comparison with 1.96 or
		Reject H ₀ . Significant evidence that there is a difference in standard of difference in $\frac{1}{2}$		0.025	, allow unpooled, 1.645 from 1-tailed
		is a uniference in standard of difficulty	A1√	Concl	lusion, contextualised, not too assertive
					· · · · · · · · · · · · · · · · · · ·
	(ii)	One-tail test used	M1	One-t	railed test stated or implied by
		Smanest significance level 2.2(1)/0	AI .	Ψ(2.	015), OK II 011-scale; allow 0.022(1)

			WWW. MYN MYN
4734	Mark S	cheme	June 20. Asin Sci
5 (i)	Numbers of men and women should have normal dists; with equal variance; distributions should be independent	B1 B1 B1 3	Context & 3 points: 2 of these, B1; 3, B2; 4, B3. [Summary data: 14.73 49.06 52.57 16.24 62.18 66.07]
(ii)	H ₀ : $\mu_M = \mu_W$; H ₁ : $\mu_M \neq \mu_W$ $3992 - \frac{221^2}{15} + 5538 - \frac{276^2}{17} [\approx 1793]$ 1793/(14 + 16) = 59.766 (\pm) $\frac{221/15 - 276/17}{\sqrt{59.766(\frac{1}{15} + \frac{1}{17})}} = (-)0.548$ Critical region: $ t \ge 2.042$	B1 M1 A1 A1 M1 A1√ A1	Both hypotheses correctly stated Attempt at this expression (see above) Either 1793 or 30 Variance estimate in range [59.7, 59.8] (or $\sqrt{=7.73}$) Standardise, allow wrong (but not missing) 1/n Correct formula, allow $s^2(\frac{1}{15} + \frac{1}{17})$ or $(\frac{s^2}{15} + \frac{s^2}{17})$, allow 14 & 16 in place of 15, 17; 0.548 or -0.548 2.042 scene
	Do not reject H_0 . Insufficient evidence of a difference in mean number of days	$ \begin{array}{c} \mathbf{B1} \\ \mathbf{M1} \\ \mathbf{A1} \sqrt{10} \end{array} $	2.042 seen Correct method and comparison type, must be <i>t</i> , allow 1-tail; conclusion, in context, not too assertive
(iii)	Eg Samples not indep't so test invalid	B1 1	Any relevant valid comment, eg "not representative"

					WWW. MYM MY NS
47	/34	Mark S	cheme		June 20. Allo
6	(i)	$F(0) = 0, F(\pi/2) = 1$ Increasing	B1 B1 2	2	Consider both end-points Consider F between end-points, can be asserted
	(ii)	$\sin^4(Q_1) = \frac{1}{4}$ $\sin(Q_1) = \frac{1}{\sqrt{2}}$ $Q_1 = \frac{\pi}{4}$	M1 A1 A1 3	3	Can be implied. Allow decimal approximations Or 0.785(4)
	(iii)	$G(y) = P(Y \le y) = P(T \le \sin^{-1} y) = F(\sin^{-1} y) = y^{4} g(y) = \begin{cases} 4y^{3} & 0 \le y \le 1 \\ 0 & \text{otherwise} \end{cases}$	M1 A1 A1 M1 A1 5	5	Ignore other ranges Differentiate G(y) Function and range stated, allow if range given in G
	(iv)	$\int_{0}^{1} \frac{4}{1+2y} dy = \left[2 \ln(1+2y) \right]_{0}^{1}$ $= 2 \ln 3$	M1 A1 A1 3	3	Attempt $\int \frac{g(y)}{y^3 + 2y^4} dy$; $\int_0^1 \frac{4}{1 + 2y} dy$ Or 2.2, 2.197 or better
7	(i) α	$\Phi\left(\frac{8.084 - 8.592}{0.7534}\right) = \Phi(-0.674) = 0.25$ $\Phi(0) - \Phi(above) = 0.25$ $P(8.592 \le X \le 9.1) = same by symmetry$	M1 A1 A1 A1	4	Standardise once, allow $\sqrt{\text{confusions, ignore}}$ sign Obtain 0.25 for one interval For a second interval, justified, eg using $\Phi(0) = 0.5$ For a third, justified, eg "by symmetry"
	or β	$\frac{x - 8.592}{0.7534} = 0.674$ x = 8.592 ± 0.674×0.7534 = (8.084, 9.100)	M1A1 A1A1		[from probabilities to ranges] A1 for art 0.674
	(ii)	H ₀ : normal distribution fits data All E values $50/4 = 12.5$ $X^2 = \frac{4.5^2 + 9.5^2 + 1.5^2 + 3.5^2}{12.5} = 10$ 10 > 7.8794 Reject H ₀ . Significant evidence that normal distribution is not a good fit.	B1 B1 M1 A1 B1 M1 A1√ 7	7	<i>Not</i> N(8.592, 0.7534). Allow "it's normally distributed" [Yates: 8.56: A0] CV 7.8794 seen Correct method, incl. formula for χ^2 and comparison, allow wrong ν Conclusion, in context, not too assertive
	(iv)	$8.592 \pm 2.576 \times \frac{0.7534}{\sqrt{49}}$ (8.315, 8.869)	M1 A1 A1 3	3	Allow $\sqrt{\text{errors}}$, wrong σ or z , allow 50 Correct, including $z = 2.576$ or $t_{49} = 2.680$, <i>not</i> 50 In range [8.31, 8.32] and in range (8.86, 8.87], even from 50, or (8.306, 8.878) from t_{49}

Munu. My Ma Marine June 20. Painscioud.com

4735 Probability & Statistics 4

1	$\mathbf{M}_{X_{1}+X_{2}}(t) = (e^{\mu_{1}t + \frac{1}{2}\sigma_{1}^{2}t^{2}})(e^{\mu_{2}t + \frac{1}{2}\sigma_{2}^{2}})$	M1		MGF of sum of independent RVs
	$= e^{(\mu_1 + \mu_2)t + \frac{1}{2}(\sigma_1^2 + \sigma_2^2)t^2} \qquad oe$	A1		
	$X_1 + X_2 \sim$ Normal distribution with mean $\mu_1 + \mu_2$, variance $\sigma_1^2 + \sigma_2^2$	A1 A1A1 5 {5	5	No suffices:- Allow M1A0A1A0A0
2 (i)	Non-parametric test used when the distribution of the variable in question is unknown	B1 1	1	
(ii)	H ₀ : $m_{V-A} = 0$, H ₁ : $m_{V-A} \neq 0$ where m_{V-A} is the median of the population differences Difference and rank, bottom up $P = 65 \ Q = 13$ T = 13 Critical region: $T \le 13$ 13 is inside the CR so reject H ₀ and accept that there is sufficient evidence at the 5% significance level that the medians differ Use B(12, 0.5) P(≤ 4) = 0.1938 or CR = {0,1,2,10,11,12} > 0.025, accept that there is insufficient evidence, etc. CWO	B1 M1 A1 B1 M1 A1 A1 A1	9	Allow $m_V = m_A$ etc Allow $P > Q$ stated Penalise over-assertive conclusions once only. Or 4 not in CR
(iii)	Wilcoxon test is more powerful than the sign test	B1 { 11	1	Use more information, more likely to reject NH
3 (i)	A + B = $\int_{-\infty}^{0} e^{2x} e^{xt} dx + \int_{0}^{\infty} e^{-2x} e^{xt} dx$ = $\left[\frac{1}{2+t} e^{(2+t)x}\right]_{-\infty}^{0} + \left[-\frac{1}{2-t} e^{-(2-t)x}\right]_{0}^{\infty}$ = $1/(2+t) + 1/(2-t)$ = $4/(4-t^{2})$ AG t < -2, A infinite; $t > 2$, B infinite	M1 B1 B1 A1 B1	5	Added, correct limits Correct integrals Allow sensible comments about denom of $M(t)$
(ii)	Either: $4/(4 - t^2) = (1 - \frac{1}{4}t^2)^{-1}$ = $1 + \frac{1}{4}t^2 + \dots$ Or: M' (t) = $8t/(4 - t^2)^2$	M1 A1		Expand M1
	$M''(t) = 8/(4 - t^{2})^{2} + t \times$ E(X) = 0 Var(X) = 2×1/4 - 0 = 1/2	M1 A1 {9	4	A1 For M"(0) – $[M'(0)]^2$ or equivalent 0.5 - 0 = 0.5

4735	Mark Sc	cheme		June 20. Rains
4	G(1)=1 [a+b=1]	M1		
(1)	G'(1) = -0.7 $[-a + 2b = -0.7]$	MI		
	solve to obtain $a = 0.9$ $b = 0.1$		4	
(ii)	$G''(t) = 1.8/t^3 + 0.2$ and	M1		
()	$G''(1) + G'(1) - [G'(1)^2]$ used			
	$Var = 2 - 0.7 - 0.7^2 = 0.81$	A1	2	
(iii)	$[(0.9+0.1t^3)/t]^{10}$	M1		$[(a+bt^3)/t]^{10}$
	Method to obtain coefficient of t^{-1}	M1		For both
	10×0.9 ⁹ ×0.1	A1 ft		Use of MGF. 10 <i>a</i> b
	= 0.387 to 3SF	Al	4	
	Marginal dist of $V := 0.20, 0.45, 0.15, 0.10$	{D1}	10}	
\mathbf{v}	F = 0.45 + 0.3 + 0.3 = 1.05			
	$Var = 0.45 + 0.6 + 0.9 - 1.05^{2}$			
	= 0.8475	B1	3	
ii)	Consider a particular case to show	M1		Or $E(X_A)$, $E(X_B)$ and $E(X_AX_B)$
	$P(X_A \text{ and } X_B) \neq P(X_A)P(X_B)$		_	1.05, 1.15, 1.09;
	So X_A and X_B are not independent	Al	2	$E(X_A)E(X_B) = 1.0275$, ft on wrong
	$C_{OV} = E(Y, Y) = E(Y)E(Y)$	M1		$E(A_A)$
"	$C_{0V} = E(A_A A_B) = E(A_A)E(A_B)$ = 1.09 - 1.15×1.05 = -0.1175			Wrong $F(X_i)$
	$Var(X_4 - X_p) = Var(X_4) + Var(X_p) -$	M1		
	$2\text{Cov}(X_4, X_B)$	A1	4	
	=1.91		-	
v)	Requires $P(X_A, X_B)/P(X_A+X_B=1)$			
	= 0.13/(0.16 + 0.13)	M1		
	= 13/29 = 0.448	A1A1		
		A1	4	
		{	13}	

		m
A725 Mark Sa	homo	Winyman and Andrews
4735 Mark Sc	neme	June 20. 19
$\overline{6(\mathbf{i})} \int_{a}^{\infty} x e^{\mathbf{i}(x-a)} dx = \left[-x e^{-(x-a)}\right]_{a}^{\infty} + \int_{a}^{\infty} e^{-(x-a)} dx$	M1B1	Correct limits needed for M1; no, or
$= a + [-e^{-(x-a)}]$	A 1 2	incorrect, limits allowed for B1
= a + 1 AG		
(11) $E(I_1) = (a+1) + 2(a+1) - 2(a+1) - 1$ = a		
$E(T_2) = \frac{1}{4}(a+1+a+1) + (n-2)(a+1)/[2(n-2)] - 1$	M1	
= a	A1 4	
(So both are unbiased estimators of <i>a</i>)		
(iii) $\sigma^2 = \operatorname{Var}(X)$	M1	
$Var(T_1) = (1 + 4 + 1 + 1)\sigma^2 = 7\sigma^2$	A1	
$Var(T_2) = 2\sigma^2/16 + (n-2)\sigma^2/[2(n-2)^2]$		
$= n\sigma^{2}/[8(n-2)] \text{ oe}$ This is clearly $< 7^{2}$ as T is more efficient		
$ \text{Inis is clearly} < /\sigma$, so I_2 is more efficient	A 4	D1 for complement
(iv) eg / $_n(A_1 + A_2 + \dots + A_n) = 1$	13	BT for sample mean
7 (i) D denotes "The person has the disease"		
(a) $P(D) = p$, $P(D') = 1 - p$,		
P(+ D) = 0.98, P(+ D') = 0.08		
$P(+) = p \times 0.98 + 0.08 \times (1-p)$	MI	
P(D +) = P(+ D)(P(D)/P(+))	M1	Use conditional probability
= 0.98n/(0.08 + 0.9n)	A1	
(b) $P(D') \times P(+ D') + P(D) \times P(- D)$	M1	
= 0.08 - 0.06p	A1 5	
(ii) $P(++) = 0.98^2 \times p + 0.08^2 \times (1-p)$	M1	1
P(D ++) = 0.9604p/(0.954p+0.0064)	A1 2	
(iii) Expected number with 2 tests:		
$24000 \times 0.0809 = a$	M1	Or: $0.08 + 0.9 \times 0.001$ oe
$24000 \times 0.0809 = a$ Expected number with 1 test:	M1	Or: $0.08 \pm 0.9 \times 0.001$ oe
$24000 \times 0.0809 = a$ Expected number with 1 test: $24000 \times 0.9191 = b$	M1 M1	Or: $0.08 \pm 0.9 \times 0.001$ oe $\times 5 \times 24000$
$24000 \times 0.0809 = a$ Expected number with 1 test: $24000 \times 0.9191 = b$ Expected total cost = £(10a + 5b) = £129 708	M1 M1 M1 A1 4	Or: $0.08 + 0.9 \times 0.001$ oe $\times 5 \times 24000$ $+5 \times 24000$ (dep 1 st M1)

MWWW. My Marks June 20. Painscioud.com

4736 Decision Mathematics 1

1 (i)	[43 172 536 17 314 462 220 231]			
	43 172 536 17 220	M1	First folder correct	
	314 462	M1	Second folder correct	
	231	A1	All correct (cao)	[3]
(ii)	536 462 314 231 220 172 43 17	B1	List sorted into decreasing order seen (cao)	
			[Follow through from a decreasing list with no more than 1 error or omission]	
	536 462	M1	First folder correct	[3]
	314 231 220 172 43 17	A1	All correct	
(iii)	$(5000 \div 500)^2 \times 1.3$	M1	$10^2 \times 1.3$	
			or any equivalent calculation	
	= 130 seconds	A1	Correct answer, with units	[2]
			Total =	8

2 (i)	The sum of the orders must be even, (but $1+2+3+3 = 9$ which is odd).	B1	There must be an even number of odd nodes.	[1]
(ii) a	eg I	M1	A graph with five vertices that is neither connected nor simple	
		A1	Vertex orders 1, 1, 2, 2, 4	[2]
b	Because it is not connected	B1	You cannot get from one part of the graph to the other part.	[1]
с	eg	B1	A connected graph with vertex orders 1, 1, 2, 2, 4 (Need not be simple)	
				[1]
(iii) a	There are five arcs joined to <i>A</i> . Either Ann has met (at least) three of the others or she has met two or fewer, in which case there are at least three that she	M1	A reasonable attempt (for example, identifying that there are five arcs joined to A)	
	has not met. In the first case at least three of the arcs joined to A are blue, in the second case at	A1	A convincing explanation (this could be a list of the possibilities or a well reasoned explanation)	[2]
b	If any two of Bob, Caz and Del have met	M1	A reasonable or partial attempt	
	one another then <i>B</i> , <i>C</i> and <i>D</i> form a blue triangle with <i>A</i> . Otherwise <i>B</i> , <i>C</i> and <i>D</i> form a red triangle.	A1	(using A with B, C, D) A convincing explanation (explaining both cases fully)	[2]
			Total =	9

4736		Mark Scheme	June 20	Mu Maths
3 (i)	$y \ge x$ $x + y \le 8$ $x \ge 1$	M1 M1 M1 A1	Line $y = x$ in any form Line $x + y = 8$ in any form Line $x = 1$ in any form All inequalities correct [Ignore extra inequalities that do not affect the feasible region]	[4]
(ii)	(1, 1), (1, 7), (4, 4)	M1 A1	Any two correct coordinates All three correct [Extra coordinates given \Rightarrow M1, A0]	[2]
(iii)	(1, 7) \Box 23 (4, 4) \Box 20 At optimum, $x = 1$ and $y = 7$ Maximum value = 23	M1 A1 A1	Follow through if possible Testing vertices or using a line of constant profit (may be implied) Accept (1, 7) identified 23 identified	[3]
(iv)	$2 \times 1 + k \times 7 \ge 2 \times 4 + k \times 4$ $\Box \ k \ge 2$	M1 A1	2 + 7k or implied, or using line of gradient - $\frac{2}{k}$ Greater than or equal to 2 (cao) $[k > 2 \Rightarrow M1, A0]$	[2]
			Total =	11

			mm	1- 200
4736	Mark S	cheme	June 20	Math aths
				'SCIDUC
4 (i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 M1 A1	Both 6 and 5 shown at <i>D</i> [5 may appear as perm label only] 14, 13.5 and 10.5 shown at <i>G</i> No extra temporary labels All temporary labels correct [condone perm values only appearing as perm labels] [Dep on both M marks]	9. coj.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B1 B1	All permanent labels correct [may omit G, but if given it must be correct] Order of labelling correct [may omit G but if given it must be correct]	
	Route = $A - B - D - F - H$ Length = 9.5 miles	B1 B1	cao cao	[7]
(ii)	Route Inspection problem	B1	Accept Chinese Postman	[1]
(iii)	Odd nodes: A, D, E and H $AD = 5$ $AE = 8$ $AH = 9.5$ $EH = 5$ $DH = 4.5$ $DE = 3.5$ 10 12.5 13.0	B1 M1 A1	Identifying or using <i>A</i> , <i>D</i> , <i>E</i> , <i>H</i> Attempting at least one pairing At least one correct pairing or correct total	
	Repeat AD (A-B-D) and EH (E-F-H) Length = 67.5 +10	M1	Adding their 10 to 67.5	
<i>(</i> •)	= 77.5 miles	Al	77.5 (cao)	[5]
(IV)	Repeat arcs <i>EF</i> and <i>FD</i> 3.5 + 67.5 = 71 miles	BI B1	cao [NOI DE or D - F - E]	[2]
(v)	A - B - C - G - F - D then method stalls <i>E</i> and <i>H</i> are missed out	B1	Showing route as far as <i>D</i> and then explaining the problem	[1]
(vi)	C - B - A - D - F - E - H - G - C 37.5 miles	M1 A1 B1	[If final C is missing \Rightarrow M1, A0] [A diagram needs arrows for A1] 37.5 (cao)	[3]
(vii)				
		M1 A1	A spanning tree on reduced network (may show <i>AB</i> , <i>AD</i>) Correct minimum spanning tree marked, with no extra arcs	
	Nodes: $B \ C \ D \ F \ E \ H \ G$ Weight = 16 miles	B1 B1	cao cao	
	[Two shortest arcs from A are AB and AD] 2+6+16 Lower bound = 24 miles	M1 A1	8 + their 16 (or implied) cao	[6]
	1		Total =	25

			mm	34
4736	Mark Sch	eme	June 20	maths
5 (i)	$\begin{array}{c} 15x+15y+30z \leq 9000\\ \text{[divide through by 15 to get } x+y+2z \leq 600 \text{ as} \end{array}$	B1	$15x+15y+30z \le 9000$	
	Stamping out: $5x+8y+10z \le 3600$ Fixing pin: $50x+50y+50z \le 25000$	B1	$5x+8y+10z \le 3600$	
	$\Box x + y + z \le 500$ Checking: 100x+50y+20z \le 10000	B1	$x + y + z \le 500$	
	$\Box \ 10x + 5y + 2z \le 1000$	B1	$10x + 5y + 2z \le 1000$	[4]
(ii)	x, y and z are non-negative	B1	$x \ge 0, y \ge 0$ and $z \ge 0$	[1]
(iii)	(P=) 4x + 3y + z	B1	cao	[1]
(iv)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	B1 B1 M1 A1	Follow through if reasonable -4 -3 -1 in objective row Correct use of slack variables 1 1 2 and 600 correct All constraint rows correct Accept variations in order of rows and columns	[4]
(v)	Pivot on the 10 in the x-column 1 0 -1 -0.2 0 0 0.4 400 0 0 0.5 1.8 1 0 0 -0.1 500 0 0 5.5 9 0 1 0 -0.5 3100 0 0 0.5 0.8 0 1 -0.1 400 0 1 0.5 0.2 0 0 0.1 100	B1 M1 A1	Correct choice of pivot from x- column [Follow through their tableau and valid pivot if possible: no negative values in RHS column and P value has not decreased] Pivot row correct Other rows correct	[3]
	Pivot on 0.5 in the last row of y-column 1 2 0 0.2 0 0 0.6 600 0 -1 0 1.6 1 0 0 -0.2 400 0 -11 0 6.8 0 1 0 -1.6 2000 0 -1 0 0.6 0 0 1 -0.2 300 0 -1 0 0.6 0 0 1 -0.2 300 0 2 1 0.4 0 0 0.2 200	B1 M1 A1	Correct choice of pivot from y-column [Follow through their tableau and valid pivot if possible] Pivot row correct Other rows correct	[3]
	x = 0, y = 200, z = 0, P = 600 Make 20 000 metallic badges (and no laminated badges or plastic badges)	B1	Interpretation of their x , y and z values in context (may imply zero entries)	
	To give a profit of £600	B1	Interpretation of their <i>P</i> value in context	
	6000 seconds (100 min) of printing time not used, 2000 seconds (33 min 20 sec) of stamping out time not used, 15000 seconds (250 min) of fixing pin time not used. All the checking time is used	B1	Interpretation of their slack variable values	[3]
		<u>I</u>	Total =	19

MWWW. My Marks June 20. Parks Cloud. Com

1(a) (i)	$ \begin{array}{c} $	B1	A correct bipartite graph	[1]
(ii)	$A \bullet \qquad F$ $B \bullet \qquad G$ G $C \bullet \qquad H$ $D \bullet \qquad J$ $E \bullet \qquad K$	B1	A second bipartite graph showing the incomplete matching correctly	[1]
(iii)	E = F - A = H - D = K Fiona = Egg and tomato $F = E$ Gwen = Beef and horseradish $G = B$ Helen = Avocado and bacon $H = A$ Jack = Chicken and stuffing $J = C$	B1 B1	This path in any reasonable form This complete matching	[2]
(iv)	Mr King = Duck and plum sauce $K = D$ Interchange Gwen and Jack $F = E$ $G = C$ $H = A$ $J = B$ $K = D$	B1	This complete matching	[1]

		Mark	c Schem	9	June 20	math
Reduce rows						
F C	\overline{H}	J	K			
L 7 7	7	7	0			
M 2 6	4	2	0	M1	Substantially correct attempt to	
N 8 8	8	6	0		reduce rows	
0 1 3	2	1	0			
P 6 9	7	5	0			
Reduce columns						
F	T H	J	K			
	5	6	0	M1	Substantially correct attempt to	
M 1 3	2	1	0		reduce columns	
N 7 5	6	5	0			
<i>O</i> 0 0	0	0	0	AI	cao	
P 5 6	5	4	0			[3]
Cross out 0's using	two (minin	n n o	of lines			
F	$\frac{1}{2}$	$\frac{10111}{I}$	$\frac{1}{K}$			
	5	6				
M 1 3	2	1	0			
N 7 5	6	5	0			
0 0 0) 0	0	0			
P 5 6	5	4	0			
Augment by 1				M1	Substantially correct attempt at	
<i>F</i> (F H	J	K		augmenting	
	4	5	0			
M = 0	1	0	0			
N 6 2	5	4	0	A 1	A	[[]]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		0	1	AI	Augmenting correctly	[2]
Cross out 0's using lines	three (mini	mum no	0. of)			
	F H	J	K			
L 5 3	4	5				
	5					
		4	1			
		3				
Augment by 3		5				
F (G H	J	K			
) 1	2	0	M1	Substantially correct attempt at	
	2 1	0	3		augmenting (by more than 1 in a	
<u>N</u> 3 1	2	1	0	Λ1	single step)	
0 0 0	0	0	4			
P 1 2	1	0	0			
Lemon = Gwen						
Mandarin = Fiona				B1	Correct allocation	
Nectarine = Mr Kin	ng					
Orange = Helen						1

							mm.m.	14
4737				Ма	ark Scheme)	June 20	naths the
2 (i)	Stage 2 1 0 Maximu Weight =	State $ \begin{array}{r} 0 \\ 1 \\ 2 \\ 0 \\ 1 \end{array} $ $ \begin{array}{r} 0 \\ 1 \\ 2 \\ 0 \\ \hline 0 \\ m route = 24 \end{array} $	Action 0 0 0 1 0 1 2 0 1 2 0 1 2 e = (0;0)	Working 7 6 8 5+7=12 6+6=12 4+7=11 5+6=11 6+8=14 10+7=17 9+6=15 6+8=14 8+12=20 9+14=23 7+17=24 -(1;2)-(2;3)	Suboptimal maxima 7 6 8 12 12 14 17 24 0) - (3;0)	 B1 M1 A1 B1 M1 A1 B1 M1 A1 B1 B1 B1 B1 	Structure of table correct Stage and state values correct Action values correct Working backwards from stage 2 7, 6, 8 correct in suboptimal maxima column for stage 2 Working column substantially correct for stage 1 Sums correct for stage 1 Suboptima maxima values correct for stage 1 Working column substantially correct for stage 0 Sums correct for stage 0 Correct route from (0; 0) to (3; 0) 24 cao	[3] [3] [2]
(ii) (iii)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					B1 M1 A1 M1 A1 B1 B1 M1 A1	Assigning <i>A</i> to <i>N</i> appropriately Substantially correct forward pass Forward pass correct Substantially correct backward pass Backward pass correct 24 (cao) <i>C</i> , <i>I</i> , <i>L</i> (cao) Same path is found in both Recognition of why the solutions are the same, in general	[7]
							Total =	20

			mm	12	
4737	Mark Scheme	9	June 20	mathsci	ths
3 (i)	For each pairing, the total of the points is 10. Subtracting 5 from each makes the total 0. Eg 3 points and 7 points \Rightarrow scores of -2 and +2	M1 A1	Sum of points is 10 So sum of scores is zero A specific example earns M1 only	[2]	HU.COM
(ii)	W scores -1 P has 6 points and W has 4 points	B1 B1	-1 6 and 4	[2]	
(iii)	<i>W</i> is dominated by <i>Y</i> -1 < 1, -3 < -2 and 1 < 2	B1 B1	<i>Y</i> These three comparisons in any form	[2]	
(iv)	ColliesCollies X Y Z row min P 2 -1 3 -1 Q 1 -3 -1 -3 R -4 1 0 -4 col 2 1 max	M1	Determining row minima and column maxima, or equivalent		
	Play-safe for Rovers is <i>P</i> Play-safes for Collies is <i>Y</i>	A1 A1	P Y	[3]	
(v)	2p - 4(1-p) = 6p - 4 Y gives 1 - 2p Z gives 3p	B1 B1	6 <i>p</i> - 4 in simplified form Both 1 -2 <i>p</i> and 3 <i>p</i> in any form	[2]	
(vi)	$6p - 4 = 1 - 2p \Longrightarrow p = \frac{5}{8}$	B1 M1 A1	Their lines drawn correctly on a reasonable scale Solving the correct pair of equations or using graph correctly $\frac{5}{8}$, 0.625, cao	[3]	
(vii)	Add 4 throughout matrix to make all values non- negative On this augmented matrix, if Collies play X Rovers expect $6p_1 + 5p_2$; if Collies play Y Rovers expect $3p_1 + p_2 + 5p_3$; and if Collies play Z Rovers expect $7p_1 + 3p_2 + 4p_3$ We want to maximise M where M only differs	B1 B1 B1	 'Add 4', or new matrix written out or equivalent Relating to columns <i>X</i>, <i>Y</i> and <i>Z</i> respectively. Note: expressions are given in the question. For each value of <i>p</i> we look at the 		
	by a constant from m and, for each value of p , m is the minimum expected value.		minimum output, then we maximise these minima.	[3]	
(viii)	$p_3 = \frac{3}{8}$ $M = -\frac{1}{4}$	B1 B1	cao	[2]	
	· · · · · · · · · · · · · · · · · · ·	1	Total =	19	

			mm	4
4737	Mark Scheme)	June 20	mathsc
4 (i)	8+0+6+5+4 = 23 gallons per minute	M1 A1	8+0+6+5+4 or 23 23 with units	[2]
(ii)	At most 6 gallons per minute can enter A so there cannot be 7 gallons per minute leaving it At most 7 gallons per minute can leave F so there cannot be 10 gallons per minute entering it.	B1 B1	Maximum into $A = 6$ Maximum out of $F = 7$	[2]
(iii)	A diagram showing a flow with 12 through E Flow is feasible (upper capacities not exceeded) Nothing flows through A and D Maximum flow through $E = 12$ gallons per	M1 M1 A1 B1	Assume that blanks mean 0	[4]
(iv) a b	If flows through A but not D its route must be S - A - C - E, but the flow through E is already a maximum S - (B) - C - D - F - T 1 gallon per minute	B1 M1	A correct explanation Follow through their part (iii)	[1]
(v)	Flow = $12 + 1 = 13$ gallons per minute			[2]
	Cut through <i>ET</i> and <i>FT</i> or { <i>S</i> , <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> , <i>E</i> , <i>F</i> }, { <i>T</i> } = 13 gallons per minute	B1	Identifying this cut in any way	
	Every cut forms a restriction Every cut \geq every flow \Box min cut \geq max flow	M1 A1	Use of max flow – min cut theorem min cut \geq max flow	
	This cut = this flow so must be min cut and max flow	BI	This cut = this flow (or having shown that both are 13)	[4]
(vi)	3 gallons per minute Must flow 6 along <i>ET</i> and 7 along <i>FT</i> . Can send 4 into <i>F</i> from <i>D</i> so only need to send 9 through <i>E</i>	B1 B1 B1	3 A correct explanation	[3]
(vii)	A diagram showing a flow of 13 without using BE Flow is feasible and only sends 9 through E	M1 A1	May imply directions and assume that blanks mean 0	[2]
			Total =	20

Grade Thresholds

Advanced GCE Mathematics (3890-2, 7890-2) June 2009 Examination Series

Unit Threshold Marks

78	392	Maximum Mark	Α	В	С	D	E	U
4724	Raw	72	58	51	44	38	32	0
4721	UMS	100	80	70	60	50	40	0
4722	Raw	72	56	49	42	35	28	0
4722	UMS	100	80	70	60	50	40	0
4722	Raw	72	53	46	39	33	27	0
4723	UMS	100	80	70	60	50	40	0
4724	Raw	72	53	46	39	33	27	0
4724	UMS	100	80	70	60	50	40	0
4725	Raw	72	49	43	37	32	27	0
4725	UMS	100	80	70	60	50	40	0
4726	Raw	72	53	46	40	34	28	0
4720	UMS	100	80	70	60	50	40	0
4707	Raw	72	55	49	43	38	33	0
4/2/	UMS	100	80	70	60	50	40	0
4729	Raw	72	62	52	42	33	24	0
4720	UMS	100	80	70	60	50	40	0
4729	Raw	72	57	48	39	31	23	0
4729	UMS	100	80	70	60	50	40	0
4730	Raw	72	61	51	41	32	23	0
4730	UMS	100	80	70	60	50	40	0
4724	Raw	72	55	46	38	30	22	0
4731	UMS	100	80	70	60	50	40	0
4722	Raw	72	54	47	40	33	27	0
4732	UMS	100	80	70	60	50	40	0
4733	Raw	72	57	49	41	33	26	0
4733	UMS	100	80	70	60	50	40	0
4724	Raw	72	55	48	41	34	27	0
4734	UMS	100	80	70	60	50	40	0
4725	Raw	72	52	45	38	32	26	0
4735	UMS	100	80	70	60	50	40	0
1726	Raw	72	57	50	44	38	32	0
4/30	UMS	100	80	70	60	50	40	0
4727	Raw	72	52	46	40	34	29	0
4/3/	UMS	100	80	70	60	50	40	0

www.mymathscioud.com
Specification Aggregation Results

	Maximum Mark	Α	В	С	D	Е	U
3890	300	240	210	180	150	120	0
3891	300	240	210	180	150	120	0
3892	300	240	210	180	150	120	0
7890	600	480	420	360	300	240	0
7891	600	480	420	360	300	240	0
7892	600	480	420	360	300	240	0

WWW.MYMathscloud.com

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

The cumulative percentage of candidates awarded each grade was as follows:

	A	В	С	D	E	U	Total Number of Candidates
3890	37.64	54.75	68.85	80.19	88.46	100	18954
3892	58.92	74.42	85.06	91.87	96.04	100	2560
7890	47.57	68.42	83.78	93.17	98.15	100	11794
7892	60.58	80.66	90.76	95.89	98.72	100	2006

For a description of how UMS marks are calculated see: http://www.ocr.org.uk/learners/ums_results.html

Statistics are correct at the time of publication.

List of abbreviations

Below is a list of commonly used mark scheme abbreviations. The list is not exhaustive.

AEF	Any equivalent form of answer or result is equally acceptable
AG	Answer given (working leading to the result must be valid)
CAO	Correct answer only
ISW	Ignore subsequent working
MR	Misread
SR	Special ruling
SC	Special case
ART	Allow rounding or truncating
CWO	Correct working only
SOI	Seen or implied
WWW	Without wrong working
Ft or √	Follow through (allow the A or B mark for work correctly following on from previous incorrect result.)

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General) Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

