Mathematics

Mark Schemes for the Units

June 2009

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, GCSEs, OCR Nationals, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2009
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Mathematics (7890)
Advanced GCE Pure Mathematics (7891)
Advanced GCE Further Mathematics (7892)
Advanced Subsidiary GCE Mathematics (3890)
Advanced Subsidiary GCE Pure Mathematics (3891)
Advanced Subsidiary GCE Further Mathematics (3892)

MARK SCHEMES FOR THE UNITS

Unit/Content Page
4721 Core Mathematics 1 1
4722 Core Mathematics 2 5
4723 Core Mathematics 3 8
4724 Core Mathematics 4 12
4725 Further Pure Mathematics 1 17
4726 Further Pure Mathematics 2 20
4727 Further Pure Mathematics 3 24
4728 Mechanics 1 30
4729 Mechanics 2 33
4730 Mechanics 3 35
4731 Mechanics 4 39
4732 Probability \& Statistics 1 45
4733 Probability \& Statistics 2 50
4734 Probability \& Statistics 3 54
4735 Probability \& Statistics 4 57
4736 Decision Mathematics 1 60
4737 Decision Mathematics 2 64
Grade Thresholds 69

4721 Core Mathematics 1

1 (i) (ii)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=5 x^{4}-2 x^{-3}$ $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=20 x^{3}+6 x^{-4}$	$\begin{array}{\|ll} \hline \text { B1 } \\ \text { M1 } \\ \text { A1 } & 3 \\ \text { M1 } & \\ \text { A1 } & 2 \\ \text { A } & 5 \end{array}$	$5 x^{4}$ x^{-2} before differentiation or $k x^{-3}$ in $\frac{\mathrm{d} y}{\mathrm{~d} x}$ soi $-2 x^{-3}$ Attempt to differentiate their (i) - at least one term correct cao
2	$\begin{aligned} & \frac{(8+\sqrt{7})(2-\sqrt{7})}{(2+\sqrt{7})(2-\sqrt{7})} \\ & =\frac{9-6 \sqrt{7}}{4-7} \\ & =-3+2 \sqrt{7} \end{aligned}$	$\begin{array}{\|ll} \text { M1 } & \\ & \\ \text { A1 } & \\ \text { A1 } & \\ \text { A1 } & 4 \\ \text { A1 } & 4 \end{array}$	Multiply numerator and denominator by conjugate Numerator correct and simplified Denominator correct and simplified cao
$3 \quad \text { (i) }$ (ii) (iii)	$\begin{aligned} & 3^{-2} \\ & 3^{\frac{1}{3}} \\ & 3^{10} \times 3^{30} \\ & =3^{40} \end{aligned}$	B1 1 B1 1 M1 A1	3^{30} or 9^{20} soi
4	$\begin{aligned} & y=2 x-4 \\ & 4 x^{2}+(2 x-4)^{2}=10 \\ & 8 x^{2}-16 x+16=10 \\ & 8 x^{2}-16 x+6=0 \\ & 4 x^{2}-8 x+3=0 \\ & (2 x-1)(2 x-3)=0 \\ & x=\frac{1}{2}, x=\frac{3}{2} \\ & y=-3, y=-1 \end{aligned}$	M1* A1 M1dep* A1 A1 A1 6	Attempt to get an equation in 1 variable only Obtain correct 3 term quadratic (aef) Correct method to solve quadratic of form $a x^{2}+b x+c=0 \quad(b \neq 0)$ Correct factorisation oe Both x values correct Both y values correct or one correct pair of values www B1 second correct pair of values B1

5 (i) (ii)	$\begin{aligned} & \left(2 x^{2}-5 x-3\right)(x+4) \\ & =2 x^{3}+8 x^{2}-5 x^{2}-20 x-3 x-12 \\ & =2 x^{3}+3 x^{2}-23 x-12 \\ & \\ & 2 x^{4}+7 x^{4} \\ & =9 x^{4} \\ & 9 \end{aligned}$	$\begin{array}{\|ll} \hline \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & 3 \\ \text { B1 } & \\ \text { B1 } & 2 \\ & \\ & 5 \end{array}$	Attempt to multiply a quadratic by a linear factor or to expand all 3 brackets with an appropriate number of terms (including an x^{3} term) Expansion with no more than one incorrect term $2 x^{4}$ or $7 x^{4}$ soi www $9 x^{4} \text { or } 9$
6 (i) (ii) (iii)	 Translation Parallel to y-axis, 5 units $y=-\sqrt{\frac{x}{2}}$	B1 2 B1 B1 2 M1 $\begin{array}{ll}\text { A1 } \\ & 2 \\ & 6\end{array}$	One to one graph only in bottom right hand quadrant Correct graph, passing through origin $\begin{aligned} & \sqrt{2 x} \text { or } \sqrt{\frac{x}{2}} \text { seen } \\ & \text { cao } \end{aligned}$
$7 \quad$ (i) (ii)	$\begin{aligned} & \left(x-\frac{5}{2}\right)^{2}-\left(\frac{5}{2}\right)^{2}+\frac{1}{4} \\ & =\left(x-\frac{5}{2}\right)^{2}-6 \\ & \left(x-\frac{5}{2}\right)^{2}-6+y^{2}=0 \\ & \text { Centre }\left(\frac{5}{2}, 0\right) \\ & \text { Radius }=\sqrt{6} \end{aligned}$	B1 M1 A1 3 B1 B1 $\begin{array}{rr}\text { B1 } \\ \\ & 6 \\ & 6\end{array}$	$\begin{aligned} & a=\frac{5}{2} \\ & \frac{1}{4}-a^{2} \\ & \text { cao } \end{aligned}$ Correct x coordinate Correct y coordinate

8 (i) (ii)	$\begin{aligned} & -42<6 x<-6 \\ & -7<x<-1 \\ & x^{2}>16 \\ & x>4 \\ & \text { or } x<-4 \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } & \\ & \\ \text { A1 } & \\ \text { A1 } & 3 \\ & \\ \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & 3 \\ & 6 \\ \hline \end{array}$	2 equations or inequalities both dealing with all 3 terms -7 and -1 seen oe $-7<x<-1 \quad$ (or $x>-7$ and $x<-1$) ± 4 oe seen $x>4$ $x<-4$ not wrapped, not 'and'
9 (i) (ii) (iii)	$\begin{aligned} & \sqrt{(-1-4)^{2}+\left(9-^{-} 3\right)^{2}} \\ & =13 \\ & \left(\frac{4+^{-} 1}{2}, \frac{-3+9}{2}\right) \\ & \left(\frac{3}{2}, 3\right) \end{aligned}$ Gradient of $A B=-\frac{12}{5}$ $\begin{aligned} & y-3=-\frac{12}{5}(x-1) \\ & 12 x+5 y-27=0 \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & 2 \\ \text { M1 } \\ \text { A1 } & 2 \\ \text { B1 } & \\ \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } & 4 \\ \hline & 8 \end{array}$	Correct method to find line length using Pythagoras' theorem cao Correct method to find midpoint Correct equation for line, any gradient, through (1, 3) Correct equation in any form with gradient simplified $12 x+5 y-27=0$
10 (i) (ii) (iii) (iv)	$\begin{aligned} & (3 x+7)(3 x-1)=0 \\ & x=-\frac{7}{3}, x=\frac{1}{3} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=18 x+18 \\ & 18 x+18=0 \\ & x=-1 \\ & y=-16 \end{aligned}$ $x>-1$	M1 A1 A1 3 M1 M1 A1 A1 ft 4 B1 B1 B1 3 B1 1 11	Correct method to find roots Correct factorisation oe Correct roots Attempt to differentiate y Uses $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ Positive quadratic curve y intercept $(0,-7)$ Good graph, with correct roots indicated and minimum point in correct quadrant

4722 Core Mathematics 2

$$
1 \text { (i) } \begin{aligned}
\cos \theta & =\frac{6.4^{2}+7.0^{2}-11.3^{2}}{2 \times 6.47 .0} \\
& =-0.4211 \\
\theta & =115^{\circ} \text { or } 2.01 \mathrm{rads}
\end{aligned}
$$

M1 Attempt use of cosine rule (any angle)
A1 Obtain one of $115^{\circ}, 34.2^{\circ}, 30.9^{\circ}, 2.01,0.597,0.539$
A1 3 Obtain 115° or 2.01 rads, or better
(ii) area $=\frac{1}{2} \times 7 \times 6.4 \times \sin 115$

$$
=20.3 \mathrm{~cm}^{2}
$$

M1 Attempt triangle area using ($1 / 2$) absin C, or equiv
A1 2 Obtain 20.3 (cao)

5

2 (i) $a+9 d=2(a+3 d)$
$a=3 d$
$a+19 d=44 \Rightarrow 22 d=44$

$$
d=2, a=6
$$

M1* Attempt use of $a+(n-1) d$ or $a+n d$ at least once for u_{4}, u_{10} or u_{20}
A1 Obtain $a=3 d$ (or unsimplified equiv) and $a+19 d=44$
M1dep* Attempt to eliminate one variable from two simultaneous equations in a and d, from u_{4}, u_{10}, u_{20} and no others
A1 4 Obtain $d=2, a=6$
(ii) $S_{50}=\frac{50}{2}(2 \times 6+49 \times 2)$

$$
=2750
$$

M1 Attempt S_{50} of AP, using correct formula, with $n=50$, allow $25(2 a+24 d)$
A1 2 Obtain 2750

$3 \log 7^{x}=\log 2^{x+1}$	M 1
$x \log 7=(x+1) \log 2$	M 1
	A1
$x(\log 7-\log 2)=\log 2$	M 1
$x=0.553$	A 1

$x=0.553$

Introduce logarithms throughout, or equiv with base 7 or 2 Drop power on at least one side
Obtain correct linear equation (allow with no brackets)
Either expand bracket and attempt to gather x terms, or deal correctly with algebraic fraction
A1 5 Obtain $x=0.55$, or rounding to this, with no errors seen

5

4 (i) $\left(x^{2}-5\right)^{3}=\left(x^{2}\right)^{3}+3\left(x^{2}\right)^{2}(-5)+3\left(x^{2}\right)(-5)^{2}+(-5)^{3}$ M1* Attempt expansion, with product of powers of x^{2} and +5 ,

$$
=x^{6}-15 x^{4}+75 x^{2}-125
$$

OR
$\left(x^{2}-5\right)^{3}=\left(x^{2}-5\right)\left(x^{4}-10 x^{2}+25\right)$

$$
=x^{6}-15 x^{4}+75 x^{2}-125
$$

M2 Attempt full expansion of all 3 brackets
A1 Obtain at least two correct terms
A1 Obtain full correct expansion
(ii) $\int\left(x^{2}-5\right)^{3} \mathrm{~d} x=\frac{1}{7} x^{7}-3 x^{5}+25 x^{3}-125 x+c$

M1 Attempt integration of terms of form $k x^{n}$
A1 $\sqrt{ } \quad$ Obtain at least two correct terms, allow unsimplified coeffs
A1 Obtain $\frac{1}{7} x^{7}-3 x^{5}+25 x^{3}-125 x$
B1 $\mathbf{4}+c$, and no $\mathrm{d} x$ or \int sign

5 (i) $2 x=30^{\circ}, 150^{\circ}$ $x=15^{\circ}, 75^{\circ}$

M1 Attempt $\sin ^{-1} 0.5$, then divide or multiply by 2
A1 \quad Obtain 15° (allow $\pi / 12$ or 0.262)
A1 3 Obtain 75° (not radians), and no extra solutions in range
(ii) $2\left(1-\cos ^{2} x\right)=2-\sqrt{3} \cos x$
$2 \cos ^{2} x-\sqrt{3} \cos x=0$
$\cos x(2 \cos x-\sqrt{ } 3)=0$
$\cos x=0, \cos x=1 / 2 \sqrt{ } 3$
range
$x=90^{\circ}, x=30^{\circ}$

M1 Use $\sin ^{2} x=1-\cos ^{2} x$
A1 Obtain $2 \cos ^{2} x-\sqrt{3} \cos x=0$ or equiv (no constant terms)
M1 Attempt to solve quadratic in $\cos x$
A1 Obtain 30° (allow $\pi / 6$ or 0524), and no extra solns in
B1 5 Obtain 90° (allow $\pi / 2$ or 1.57), from correct quadratic only
SR answer only
B1 one correct solution
B1 second correct solution, and no others

$6 \int\left(3 x^{2}+a\right) \mathrm{d} x=x^{3}+a x+c$		M1		Attempt to integrate
		A1		Obtain at least one correct term, allow unsimplified
		A1		Obtain $x^{3}+a x$
$(-1,2) \Rightarrow-1-a+c=2$		M1		Substitute at least one of $(-1,2)$ or $(2,17)$ into integration attempt involving a and c
$(2,17) \Rightarrow 8+2 a+c=17$		A1		Obtain two correct equations, allow unsimplified
		M1		Attempt to eliminate one variable from two equations in a and c
$\begin{aligned} & a=2, c=5 \\ & \text { Hence } y=x^{3}+2 x+5 \end{aligned}$		A1		Obtain $a=2, c=5$, from correct equations
		A1	8	State $y=x^{3}+2 x+5$
8				
7	(i) $\mathrm{f}(-2)=-16+36-22-8$	M1		Attempt $\mathrm{f}(-2)$, or equiv
	$=-10$	A1	2	Obtain -10
(ii) $\mathrm{f}(1 / 2)=1 / 4+21 / 4+51 / 2-8=0 \mathrm{AG}$		M1		Attempt $\mathrm{f}(1 / 2)$ (no other method allowed)
		A1	2	Confirm $\mathrm{f}(1 / 2)=0$, extra line of working required
(iii) $\mathrm{f}(x)=(2 x-1)\left(x^{2}+5 x+8\right)$		M1		Attempt complete division by ($2 x-1$) or ($x-1 / 2$) or equiv
		A1		Obtain $x^{2}+5 x+c$ or $2 x^{2}+10 x+c$
		A1	3	State $(2 x-1)\left(x^{2}+5 x+8\right)$ or $(x-1 / 2)\left(2 x^{2}+10 x+16\right)$
(iv) $\mathrm{f}(x)$ has one real $\operatorname{root}(x=1 / 2)$ because $b^{2}-4 a c=25-32=-7$		B1 $\sqrt{ }$		State 1 root, following their quotient, ignore reason
hence quadratic has no real roots as $-7<0$,		B1 $\sqrt{ }$	2	Correct calculation, eg discriminant or quadratic formula, following their quotient, or cubic has max at ($-2.15,-9.9$)

8 (i) $1 / 2 \times r^{2} \times 1.2=60$
$r=10$

$$
r \theta=10 \times 1.2=12
$$

perimeter $=10+10+12=32 \mathrm{~cm}$
(ii)(a) $u_{5}=60 \times 0.6^{4}$ $=7.78$
(b) $\quad S_{10}=\frac{60\left(1-0.6^{10}\right)}{1-0.6}$
$\ldots 149$
(c) common ratio is less than 1 , so series is convergent and hence sum to infinity exists

$$
\begin{aligned}
& S_{\infty}=\frac{60}{1-0.6} \\
& =150
\end{aligned}
$$

M1 \quad Attempt $(1 / 2) r^{2} \theta=60$
A1 Obtain $r=10$
B1 $\sqrt{ } \quad$ State or imply arc length is $1.2 r$, following their r
A1 4 Obtain 32

M1 Attempt u_{5} using $a r^{4}$, or list terms
A1 2 Obtain 7.78, or better

M1 Attempt use of correct sum formula for a GP, or sum terms
A1 2 Obtain 149, or better (allow 149.0 - 149.2 inclusive)
B1 series is convergent or $-1<r<1$ (allow $r<1$) or reference to areas getting smaller / adding on less each time

M1 Attempt S_{∞} using $\frac{a}{1-r}$
A1 3 Obtain $S_{\infty}=150$
SR B1 only for 150 with no method shown
9 (i)

B1 Sketch graph showing exponential growth (both quadrants)

B1 2 State or imply $(0,4)$
(ii) $4 k^{x}=20 k^{2}$
$k^{x}=5 k^{2}$
M1 Equate $4 k^{k}$ to $20 k^{2}$ and take logs (any, or no, base)
$x=\log _{k} 5 k^{2}$
$x=\log _{k} 5+\log _{k} k^{2}$
M1 Use $\log a b=\log a+\log b$
$x=2 \log _{k} k+\log _{k} 5$
M1 Use $\log a^{b}=b \log a$
$x=2+\log _{k} 5 \quad$ AG
A1
4 Show given answer correctly
OR $4 k^{x}=20 k^{2}$
$k^{x}=5 k^{2} \quad$ M1 Attempt to rewrite as single index
$k^{x-2}=5$
A1 Obtain $k^{k-2}=5$ or equiv eg $4 k^{x-2}=20$
$x-2=\log _{k} 5$
M1 Take logs (to any base)
$x=2+\log _{k} 5 \quad$ AG
A1 Show given answer correctly
(iii) (a) area $\approx \frac{1}{2} \times \frac{1}{2} \times\left(4 k^{0}+8 k^{\frac{1}{2}}+4 k^{1}\right) \quad$ M1 \quad Attempt y-values at $x=0,1 / 2$ and 1 , and no others

$$
\approx 1+2 k^{\frac{1}{2}}+k \quad \text { A1 } 3 \text { Obtain a correct expression, allow unsimplified }
$$

(b) $1+2 k^{\frac{1}{2}}+k=16$

M1 Equate attempt at area to 16
$\left(k^{\frac{1}{2}}+1\right)^{2}=16$
M1 Attempt to solve 'disguised' 3 term quadratic
$k^{\frac{1}{2}}=3$
$k=9 \quad$ A1 3 Obtain $k=9$ only

4723 Core Mathematics 3

5 (i)
Either: Show correct process for comp'n Obtain $y=3(3 x+7)-2$

Obtain $x=-\frac{19}{9}$
Or: Use $\mathrm{fg}(x)=0$ to obtain $\mathrm{g}(x)=\frac{2}{3}$ B1
Attempt solution of $\mathrm{g}(x)=\frac{2}{3}$
Obtain $x=-\frac{19}{9}$ M1

M1 correct way round and in terms of x

A1 3 or exact equiv; condone absence of $y=0$

A1 (3) or exact equiv; condone absence of $y=0$
(ii) Attempt formation of one of the equations

$$
\begin{array}{lll}
3 x+7=\frac{x-7}{3} \text { or } 3 x+7=x \text { or } \frac{x-7}{3}=x & \text { M1 } & \text { or equiv } \\
\text { Obtain } x=-\frac{7}{2} & \text { A1 } & \text { or equiv } \\
\text { Obtain } y=-\frac{7}{2} & \text { A1 } \sqrt{ } 3 \text { or equiv; following their value of } x
\end{array}
$$

(iii) Attempt solution of modulus equation M1 squaring both sides to obtain 3-term quadratics or forming linear equation with

Obtain $-12 x+4=42 x+49$ or

$$
3 x-2=-3 x-7
$$

A1 or equiv
Obtain $x=-\frac{5}{6}$
Obtain $y=\frac{9}{2}$
A1 or exact equiv; as final answer
A1 4 or equiv; and no other pair of answers
10
6 (i) Obtain derivative $k\left(37+10 y-2 y^{2}\right)^{-\frac{1}{2}} \mathrm{f}(y)$ M1 any constant k; any linear function for f
Obtain $\frac{1}{2}(10-4 y)\left(37+10 y-2 y^{2}\right)^{-\frac{1}{2}} \quad$ A1 2 or equiv
(ii) Either: Sub'te $y=3$ in expression for $\frac{\mathrm{d} x}{\mathrm{~d} y} \quad * \mathrm{M} 1$

Take reciprocal of expression/value *M1 Obtain -7 for gradient of tangent A1 Attempt equation of tangent M1 Obtain $y=-7 x+52$

A1 5
and without change of sign
$\operatorname{dep} * M * M$
and no second equation

Or: Sub'te $y=3$ in expression for $\frac{\mathrm{d} x}{\mathrm{~d} y}$
Attempt formation of eq'n $x=m^{\prime} y+c \quad$ M1
Obtain $x-7=-\frac{1}{7}(y-3)$
Attempt rearrangement to required form M1
Obtain $y=-7 x+52$

A1 (5) and no second equation 7

7 (i) State $R=10$
Attempt to find value of α
Obtain 36.9 or $\tan ^{-1} \frac{3}{4}$

B1 or equiv
M1 implied by correct answer or its complement; allow sin/cos muddles
A1 3 or greater accuracy $36.8699 \ldots$
(ii)(a) Show correct process for finding one angle M1

Obtain $(64.16+36.87$ and hence) 101 A1
Show correct process for finding second angle
Obtain (115.84 + 36.87 and hence) 153
or greater accuracy 101.027...

M1
A1 $\sqrt{ } 4$ following their value of α; or greater accuracy $152.711 \ldots$; and no other between 0 and 360
(b) Recognise link with part (i)

Use fact that maximum and minimum values of sine are 1 and -1
Obtain 60

M1 signalled by $40 \ldots-20 \ldots$
M1 may be implied; or equiv
A1 3
10

8 (i) Refer to translation and stretch M1 in either order; allow here equiv informal
State translation in x direction by 6
State stretch in y direction by 2 terms such as 'move', ...
A1 or equiv; now with correct terminology
A1 3 or equiv; now with correct terminology
[SC: if M0 but one transformation completely correct, give B1]
(ii) State $2 \ln (x-6)=\ln x$

Show correct use of logarithm property
Attempt solution of 3-term quadratic Obtain 9 only

B1 or $2 \ln (a-6)=\ln a$ or equiv
*M1
M1 dep *M
A1 4 following correct solution of equation
(iii) Attempt evaluation of form $k\left(y_{0}+4 y_{1}+y_{2}\right)$ M1 any constant k; maybe with $y_{0}=0$ implied

Obtain $\frac{1}{3} \times 1(2 \ln 1+8 \ln 2+2 \ln 3)$
Obtain 2.58

A1 or equiv
A1 3 or greater accuracy $2.5808 \ldots$
10

9 (a) Attempt use of quotient rule $\quad * \mathrm{M} 1 \quad$ or equiv; allow numerator wrong way round and denominator errors
Obtain $\frac{\left(k x^{2}+1\right) 2 k x-\left(k x^{2}-1\right) 2 k x}{\left(k x^{2}+1\right)^{2}}$
A1 or equiv; with absent brackets implied by subsequent correct working
Obtain correct simplified numerator $4 k x$ A1
Equate numerator of first derivative to zero M1
State $x=0$ or refer to $4 k x$ being linear or
observe that, with $k \neq 0$, only one sol'n A1 $\sqrt{ } 5$ AG or equiv; following numerator of form $k^{\prime} k x=0$, any constant k^{\prime}
(b) Attempt use of product rule

Obtain $m \mathrm{e}^{m x}\left(x^{2}+m x\right)+\mathrm{e}^{m x}(2 x+m)$

Equate to zero and either factorise with factor $\mathrm{e}^{m x}$ or divide through by $\mathrm{e}^{m x}$
Obtain $m x^{2}+\left(m^{2}+2\right) x+m=0$ or equiv and observe that $\mathrm{e}^{m x}$ cannot be zero

Attempt use of discriminant
Simplify to obtain $m^{4}+4$
Observe that this is positive for all m and hence two roots
*M1
A1 or equiv

M1 dep *M

A1
M1 using correct $b^{2}-4 a c$ with their a, b, c A1 or equiv

A1 7 or equiv; AG
12

4724 Core Mathematics 4

1 Long Division For leading term $3 x^{2}$ in quotient B1
Suff evid of div process ($a x^{2}$, mult back, attempt sub) M1
(Quotient) $=3 x^{2}-4 x-5 \quad$ A1
(Remainder) $=-x+2 \quad \mathrm{~A} 1$
Identity $3 x^{4}-x^{3}-3 x^{2}-14 x-8=Q\left(x^{2}+x+2\right)+R \quad * \mathrm{M} 1$
$Q=a x^{2}+b x+c, R=d x+e \&$ attempt ≥ 3 ops. dep*M1 If $a=3$, this $\Rightarrow 1$ operation
$a=3, b=-4, c=-5$
A1 $\quad \operatorname{dep}^{*} \mathrm{M} 1 ; \mathrm{Q}=a x^{2}+b x+c$
$d=-1, e=2$
A1
Inspection Use 'Identity' method; if $R=e, \operatorname{check} \operatorname{cf}(x)$ correct before awarding $2^{\text {nd }}$ M1
4

2
Indefinite Integral Attempt to connect $\mathrm{d} x \& \mathrm{~d} \theta$
$*$ M1 \quad Incl $\frac{\mathrm{d} x}{\mathrm{~d} \theta}$ or $\frac{\mathrm{d} \theta}{\mathrm{d} x} ;$ not $\mathrm{d} x=\mathrm{d} \theta$
Reduce to $\int 1-\tan ^{2} \theta(\mathrm{~d} \theta)$
A1 A0 if $\frac{\mathrm{d} \theta}{\mathrm{d} x}=\sec ^{2} \theta$; but allow all following A marks

Use $\tan ^{2} \theta=(1,-1)+\left(\sec ^{2} \theta,-\sec ^{2} \theta\right) \quad \operatorname{dep} *$ M1
Produce $\int 2-\sec ^{2} \theta(\mathrm{~d} \theta)$ A1

Correct $\sqrt{ }$ integration of function of type $d+e \sec ^{2} \theta$
$\sqrt{ }$ A1 \quad including $d=0$
EITHER Attempt limits change (allow degrees here) M1
OR Attempt integ, re-subst \& use original $(\sqrt{3}, 1)$
$\frac{1}{6} \pi-\sqrt{3}+1 \quad$ isw \quad Exact answer required
(This is 'limits' aspect; the integ need not be accurate)

7

3 (i) $\left(1+\frac{x}{a}\right)^{-2}=1+(-2) \frac{x}{a}+\frac{-2 .-3}{2}\left(\frac{x}{a}\right)^{2}+\ldots$
$=1-\frac{2 x}{a}+\ldots$ or $1+\left(-\frac{2 x}{a}\right)$
$\ldots+\frac{3 x^{2}}{a^{2}}+\ldots \quad\left(\right.$ or $3\left(\frac{x}{a}\right)^{2}$ or $\left.3 x^{2} a^{-2}\right)$
$(a+x)^{-2}=\frac{1}{a^{2}}\left\{\right.$ their expansion of $\left.\left(1+\frac{x}{a}\right)^{-2}\right\}$ mult out

M1 Check $3{ }^{\text {rd }}$ term; accept $\frac{x^{2}}{a}$

B1 or $1-2 x a^{-1}$ (Ind of M1)

A1 Accept $\frac{6}{2}$ for 3
$\sqrt{ }$ A1 $4 \frac{1}{a^{2}}-\frac{2 x}{a^{3}}+\frac{3 x^{2}}{a^{4}}$; accept eg a^{-2}
(ii) Mult out $(1-x)$ (their exp) to produce all terms $/ \mathrm{cfs}\left(x^{2}\right) \quad$ M1 Ignore other terms

Produce $\frac{3}{a^{2}}+\frac{2}{a}(=0)$ or $\frac{3}{a^{4}}+\frac{2}{a^{3}}(=0)$ or AEF
A1 Accept x^{2} if in both terms
$a=-\frac{3}{2} \quad$ www seen anywhere in (i) or (ii)
A1 3 Disregard any ref to $a=0$ 7

4 (i) Differentiate as a product, $u \mathrm{~d} v+v \mathrm{~d} u$
M1 or as 2 separate products
$\frac{\mathrm{d}}{\mathrm{d} x}(\sin 2 x)=2 \cos 2 x$ or $\frac{\mathrm{d}}{\mathrm{d} x}(\cos 2 x)=-2 \sin 2 x$
$\mathrm{e}^{x}(2 \cos 2 x+4 \sin 2 x)+\mathrm{e}^{x}(\sin 2 x-2 \cos 2 x)$
A1 terms may be in diff order
Simplify to $5 \mathrm{e}^{x} \sin 2 x \quad$ www
A1 4 Accept $10 \mathrm{e}^{x} \sin x \cos x$
(ii) Provided result (i) is of form $k \mathrm{e}^{x} \sin 2 x, k$ const
$\int \mathrm{e}^{x} \sin 2 x \mathrm{~d} x=\frac{1}{k} \mathrm{e}^{x}(\sin 2 x-2 \cos 2 x)$
B1
$\left[\mathrm{e}^{x}(\sin 2 x-2 \cos 2 x)\right]_{0}^{\frac{1}{4} \pi}=\mathrm{e}^{\frac{1}{4} \pi}+2$
B1
$\frac{1}{5}\left(e^{\frac{1}{4} \pi}+2\right)$
B1 3 Exact form to be seen
SR Although 'Hence', award M2 for double integration by parts and solving + A1 for correct answer.

5 (i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{~d} x}{\mathrm{~d} t}}$ aef used
$=\frac{4 t+3 t^{2}}{2+2 t}$
Attempt to find t from one/both equations
State/imply $t=-3$ is only solution of both equations
Gradient of curve $=-\frac{15}{4}$ or $\frac{-15}{4}$ or $\frac{15}{-4}$
[SR If $t=1$ is given as solution $\&$ not disqualified, award A $0+\sqrt{ } \mathrm{A} 1$ for $\operatorname{grad}=-\frac{15}{4} \& \frac{7}{4}$;
If $t=1$ is given/used as only solution, award $\mathrm{A} 0+\sqrt{ } \mathrm{A} 1$ for grad $\left.=\frac{7}{4}\right]$
(ii) $\frac{y}{x}=t$ B1

Substitute into either parametric eqn
M1
Final answer $x^{3}=2 x y+y^{2}$ A2 4
[SR Any correct unsimplified form (involving fractions or common factors) \rightarrow A1]

6 (i) $4 x \equiv A(x-3)^{2}+B(x-3)(x-5)+C(x-5)$
$A=5$
$B=-5$
$C=-6$

M1
A1 'cover-up' rule, award B1
A1
A1 4 'cover-up' rule, award B1

Cands adopting other alg. manip. may be awarded M1 for a full satis method + 3 @ A1
(ii) $\int \frac{A}{x-5} \mathrm{~d} x=A \ln (5-x)$ or $A \ln |5-x|$ or $A \ln |x-5| \quad \sqrt{ } 1 \quad$ but not $A \ln (x-5)$
$\int \frac{B}{x-3} \mathrm{~d} x=B \ln (3-x)$ or $B \ln |3-x|$ or $B \ln |x-3| \quad \sqrt{ } 1 \quad$ but not $B \ln (x-3)$
If candidate is awarded $\mathrm{B} 0, \mathrm{~B} 0$, then award $\mathbf{S R} \sqrt{ } \mathrm{B} 1$ for $A \ln (x-5)$ and $B \ln (x-3)$
$\int \frac{C}{(x-3)^{2}} \mathrm{~d} x=-\frac{C}{x-3}$
$\sqrt{ }$ B1
$5 \ln \frac{3}{4}+5 \ln 2 \quad$ aef, isw $\quad \sqrt{ } A \ln \frac{3}{4}-B \ln 2 \quad V \quad$ B1 Allow if $\mathbf{S R} B 1$ awarded
$-3 \quad \sqrt{ } \frac{1}{2} C \quad \sqrt{ } 15$
[Mark at earliest correct stage \& isw; no $\ln 1$]

7 (i) Attempt scalar prod $\{\mathbf{u} .(4 \mathbf{i}+\mathbf{k})$ or $\mathbf{u} .(4 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k})\}=0 \quad$ M1
Obtain $\frac{12}{13}+c=0$ or $\frac{12}{13}+3 b+2 c=0$
A1
$c=-\frac{12}{13}$
A1
$b=\frac{4}{13}$
A1 cao No ft

Evaluate $\left(\frac{3}{13}\right)^{2}+(\text { their } b)^{2}+(\text { their } c)^{2}$
M1 Ignore non-mention of $\sqrt{ }$

Obtain $\frac{9}{169}+\frac{144}{169}+\frac{16}{169}=1 \quad$ AG
A1 6 Ignore non-mention of $\sqrt{ }$
(ii) Use $\cos \theta=\frac{\boldsymbol{x} \cdot \boldsymbol{y}}{|\boldsymbol{x} \| \boldsymbol{y}|} \quad \quad$ M1

Correct method for finding scalar product
M1
$36^{\circ}(35.837653 \ldots) \quad$ Accept $0.625(\mathrm{rad})$
A1 3 From $\frac{18}{\sqrt{17} \sqrt{29}}$
SR If $4 \mathbf{i}+\mathbf{k}=(4,1,0)$ in (i) \& (ii), mark as scheme but allow final A1 for $31^{\circ}(31.160968)$ or 0.544
9

8 (i) | $\frac{\mathrm{d}}{\mathrm{d} x}\left(y^{2}\right)=2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ | B 1 | |
| :--- | :--- | :--- |
| | $\frac{\mathrm{~d}}{\mathrm{~d} x}(u v)=u \mathrm{~d} v+v \mathrm{~d} u$ used on $(-7) x y$ | M1 |
| | $\frac{\mathrm{d}}{\mathrm{d} x}\left(14 x^{2}-7 x y+y^{2}\right)=28 x-7 x \frac{\mathrm{~d} y}{\mathrm{~d} x}-7 y+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ | A1 |
| $2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}-7 x \frac{\mathrm{~d} y}{\mathrm{~d} x}=7 y-28 x \rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{28 x-7 y}{7 x-2 y}$ | www AG | A1 4 | As AG, intermed step nec

(ii) Subst $x=1$ into eqn curve $\&$ solve quadratic eqn in $y \quad$ M1 $\quad\left(\begin{array}{l}y=3\end{array}\right.$ or 4$)$

Subst $x=1$ and (one of) their y-value(s) into given $\frac{\mathrm{d} y}{\mathrm{~d} x} \quad$ M1 $\quad\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=7\right.$ or 0$)$
Find eqn of tgt, with their $\frac{\mathrm{d} y}{\mathrm{~d}}$, going through $(1$, their $y) * \mathrm{M} 1 \quad$ using (one of) y value(s)
Produce either $y=7 x-4$ or $y=4$
A1
Solve simultaneously their two equations
Produce $x=\frac{8}{7}$
dep*M1 provided they have two
A1 6
10

B1 1
(ii) $\frac{\mathrm{d} \theta}{\mathrm{d} t}=-k_{2}(\theta-20)$

B1 1
(iii) Separate variables or invert each side Correct int of each side $(+c)$

Subst $\theta=60$ when $t=0$ into eqn containing ' c '
$c($ or $-c)=\ln 40$ or $\frac{1}{k_{2}} \ln 40$ or $\frac{1}{k_{2}} \ln 40 k_{2}$
Subst their value of c and $\theta=40$ back into equation
$t=\frac{1}{k_{2}} \ln 2$
Total time $=\frac{1}{k_{2}} \ln 2+$ their (i) \quad (seconds)

M1 Correct eqn or very similar
A1,A1 for each integration
M1 or $\theta=60$ when $t=$ their (\mathbf{i})
A1 Check carefully their ' c '

M1 Use scheme on LHS

A1 Ignore scheme on LHS

SR If the negative sign is omitted in part (ii), allow all marks in (iii) with $\ln 2$ replaced by $\ln \frac{1}{2}$.
SR If definite integrals used, allow M1 for eqn where $t=0$ and $\theta=60$ correspond; a second M1 for eqn where $t=t$ and $\theta=40$ correspond $\& \mathrm{M} 1$ for correct use of limits. Final answer scores 2.

4725 Further Pure Mathematics 1

1.	$984390625-25502500=958888125$	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { M1 } \\ \text { A1 } \end{array}$	3 3	State correct value of S_{250} or S_{100} Subtract $S_{250}-S_{100}\left(\right.$ or S_{101} or S_{99}) Obtain correct exact answer
2.	$\begin{aligned} & 3 a+5 b=1, a+2 b=1 \\ & a=-3, b=2 \end{aligned}$	M1 M1 A1 A1	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	Obtain a pair of simultaneous equations Attempt to solve Obtain correct answers.
3.	(i) $11-29 \mathrm{i}$ (ii) $1+41 \mathrm{i}$	$\begin{aligned} & \text { B1 B1 } \\ & \text { B1 B1 } \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 2 \\ & 4 \end{aligned}$	Correct real and imaginary parts Correct real and imaginary parts
4.	Either $p+q=-1, p q=-8$ $\begin{array}{ll} & \frac{p+q}{p q} \\ & -\frac{7}{8} \\ \text { Or } \quad & \frac{1}{p}+\frac{1}{q}=8 \\ & p+q=1 \\ & -\frac{7}{8} \\ \text { Or } & \frac{-1 \pm \sqrt{33}}{2} \\ & -\frac{7}{8} \end{array}$	B1 B1 M1 A1 B1 B1 M1 A1 M1 A1 M1 A1	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	Both values stated or used Correct expression seen Use their values in their expression Obtain correct answer Substitute $x=\frac{1}{u}$ and use new quadratic Correct value stated Use their values in given expression Obtain correct answer Find roots of given quadratic equation Correct values seen Use their values in given expression Obtain correct answer
5.	(i) $u^{3}=\{(-)(5 u+7)\}^{2}$ $u^{3}-25 u^{2}-70 u-49=0$ (ii) -70	M1 A1 A1 M1 A1 ft	2	Use given substitution and rearrange Obtain correct expression, or equivalent Obtain correct final answer Use coefficient of u of their cubic or identity connecting the symmetric functions and substitute values from given equation Obtain correct answer

\begin{tabular}{|c|c|c|c|c|}
\hline 6. \& \begin{tabular}{l}
(i) \(3 \sqrt{2},-\frac{\pi}{4}\) or \(-45^{\circ}\) AEF \\
(ii)(a) \\
(ii)(b) \\
(iii)
\end{tabular} \& \[
\begin{aligned}
\& \text { B1 B1 } \\
\& \text { B1B1 } \\
\& \text { B1 ft } \\
\& \text { B1 } \\
\& \text { B1 } \\
\& \text { B1 } \\
\& \text { B1ft } \\
\& \text { B1ft } \\
\& \text { B1ft }
\end{aligned}
\] \& 2
3

3
3

3

11 \& | State correct answers |
| :--- |
| Circle, centre (3, -3), through $O \mathrm{ft}$ for ($\pm 3, \pm 3$) only Straight line with + ve slope, through $(3,-3)$ or their centre Half line only starting at centre |
| Area above horizontal through a, below (ii) (b) |
| Outside circle |

\hline 7. \& | (i) |
| :--- |
| (ii) |
| (iii) $\begin{aligned} & (n+1)^{4}-1-n(n+1)(2 n+1)-2 n(n+1)-n \\ & 4 \sum_{r=1}^{n} r^{3}=n^{2}(n+1)^{2} \end{aligned}$ | \& | M1 |
| :--- |
| A1 |
| M1 |
| A1 |
| B1 B1 |
| M1* |
| *DM1 |
| A1 |
| A1 | \& 2

2

10 \& | Show that terms cancel in pairs Obtain given answer correctly |
| :--- |
| Attempt to expand and simplify Obtain given answer correctly $\text { Correct } \sum r \text { stated } \quad \sum 1=n$ |
| Consider sum of 4 separate terms on RHS |
| Required sum is LHS - 3 terms |
| Correct unsimplified expression |
| Obtain given answer correctly |

\hline 8. \& | (i) |
| :--- |
| (ii) $\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ |
| (iii) Either $\left(\begin{array}{ll} 1 & 2 \\ 0 & 1 \end{array}\right)$ |
| Or | \& | B1 |
| :--- |
| B1 |
| B1 |
| B1 B1 |
| B1 |
| M1 |
| A1ft |
| M1 |
| A2ft |
| B1 |
| B1 |
| B1 | \& 3

2

6

11 \& | Find coordinates $(0,0)(3,1)(2,1)$ $(5,2)$ found |
| :--- |
| Accurate diagram sketched |
| Each column correct |
| Correct inverse for their (ii) stated Post multiply \mathbf{C} by inverse of (ii) |
| Correct answer found |
| Set up 4 equations for elements from correct matrix multiplication All elements correct, -1 each error |
| Shear, |
| x axis invariant or parallel to x-axis eg image of $(1,1)$ is $(3,1)$ |
| SR allow s.f. 2 or shearing angle of correct angle to appropriate axis |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 9. \& \begin{tabular}{l}
(i) \(\quad a\left|\begin{array}{ll}a \& 1 \\ 1 \& 2\end{array}\right|-\left|\begin{array}{ll}1 \& 1 \\ 1 \& 2\end{array}\right|+\left|\begin{array}{ll}1 \& a \\ 1 \& 1\end{array}\right|\) \(2 a^{2}-2 a\) \\
(ii)
\[
a=0 \text { or } 1
\] \\
(iii) (a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
M1 \\
A1ft \\
A1ft \\
B1 B1 \\
B1 \\
B1
\end{tabular} \& \begin{tabular}{l}
3 \\
3 \\
4
10
\end{tabular} \& \begin{tabular}{l}
Correct expansion process shown Obtain correct unsimplified expression \\
Obtain correct answer \\
Equate their det to 0 \\
Obtain correct answers, ft solving a quadratic \\
Equations consistent, but non unique solutions \\
Correct equations seen \& inconsistent, no solutions
\end{tabular} \\
\hline 10. \& \begin{tabular}{l}
i)
\[
u_{2}=7 \quad u_{3}=19
\] \\
(ii)
\[
u_{n}=2\left(3^{n-1}\right)+1
\] \\
(iii)
\[
\begin{aligned}
\& u_{n+1}=3\left(2\left(3^{n-1}\right)+1\right)-2 \\
\& u_{n+1}=2\left(3^{n}\right)+1
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
M1 \\
A1 \\
B1ft \\
M1 \\
A1 \\
A1 \\
B1
\end{tabular} \& 3

2

5

10 \& | Attempt to find next 2 terms Obtain correct answers Show given result correctly |
| :--- |
| Expression involving a power of 3 Obtain correct answer |
| Verify result true when $n=1$ or $n=2$ |
| Expression for u_{n+1} using recurrence relation |
| Correct unsimplified answer Correct answer in correct form Statement of induction conclusion |

\hline
\end{tabular}

4726 Further Pure Mathematics 2

1(i) Attempt area $= \pm \Sigma(0.3 y)$ for at least three y values
Get $1.313(1 .$.$) or 1.314$
(ii) Attempt \pm sum of areas (4 or 5 values)

Get 0.518(4..)

Or

Attempt answer to
part (i)-final rectangle Get 0.518(4..)
(iii) Decrease width of strips

2 Attempt to set up quadratic in x
$\operatorname{Get} x^{2}(y-1)-x(2 y+1)+(y-1)=0$
Use $b^{2} \geq 4 a c$ for real x on their quadratic
Clearly solve to AG

3(i) Reasonable attempt at chain rule
Reasonable attempt at product/quotient rule
Correctly get $\mathrm{f}^{\prime}(0)=1$
Correctly get $\mathrm{f}^{\prime \prime}(0)=1$
(ii) Reasonable attempt at Maclaurin with their values
Get $1+x+1 / 2 x^{2}$

4 Attempt to divide out.
Get $x^{3}=$
$A(x-2)\left(x^{2}+4\right)+B\left(x^{2}+4\right)+(C x+D)(x-2)$
State/derive/quote $A=1$
Use x values and/or equate coeff

May be implied Or greater accuracy SC
If answers only seen, 1.313(1..) or 1.314 B2
0.518(4..) B2
$-1.313(1 .$.$) or -1.314$ B1
$-0.518(4 .$.$) \quad B1$
May be implied
Or greater accuracy
May be implied
Or greater accuracy
SC
If answers only seen,
$1.313(1 .$.$) or 1.314 \quad$ B2
$0.518(4 .$.
$-1.313(1 .$.$) or -1.314$ B1
$-0.518(4 .$.

Use more strips or equivalent
Must be quadratic; $=0$ may be implied
Allow $=,>,<, \leq$ here; may be implied If other (in)equalities used, the step to AG must be clear

SC

Reasonable attempt to diff. using
prod/quot rule M1
Solve correct $\mathrm{d} y / \mathrm{d} x=0$ to get
$x=-1, y=1 / 4$
Attempt to justify inequality e.g. graph or to show $\mathrm{d}^{2} y / \mathrm{d} x^{2}>0 \quad$ M1
Clearly solve to AG A1
Product in answer
Sum of two parts

SC

Use of $\ln y=\sin x$ follows same scheme
In $a \mathrm{f}(0)+b \mathrm{f}^{\prime}(0) x+c \mathrm{f}^{\prime \prime}(0) x^{2}$
From their $f(0), f^{\prime}(0), f^{\prime \prime}(0)$ in a correct Maclaurin; all non-zero terms

Or $A+B /(x-2)+(C x(+D)) /\left(x^{2}+4\right)$; allow $A=1$ and/or $B=1$ quoted Allow $\sqrt{ }$ mark from their Part Fract; allow $D=0$ but not $C=0$

To potentially get all their constants

A1

Get $B=1, C=1, D=-2$

5(i) Derive/quote $\mathrm{d} \theta=2 \mathrm{~d} t /\left(1+t^{2}\right)$
Replace their $\cos \theta$ and their $\mathrm{d} \theta$, both in terms of t
Clearly get $\int\left(1-t^{2}\right) /\left(1+t^{2}\right) \mathrm{d} t$ or equiv
Attempt to divide out
Clearly get/derive AG

A1 For one other correct from cwo
A1 For all correct from cwo

B1 May be implied
M1 \quad Not $\mathrm{d} \theta=\mathrm{d} t$

A1 Accept limits of t quoted here
M1 Or use AG to get answer above
A1

SC

Derive $\mathrm{d} \theta=2 \cos ^{2} 1 / 2 \theta \mathrm{~d} t \quad \mathrm{~B} 1$
Replace $\cos \theta$ in terms of half-angles and their $\mathrm{d} \theta(\neq \mathrm{d} t)$ M1
Get $\int 2 \cos ^{2} 1 / 2 \theta-1 \mathrm{~d} t$ or $\int 1-1 / 2 \cos ^{21 / 2} \theta .2 /\left(1+t^{2}\right) \mathrm{d} t \quad \mathrm{~A} 1$
Use $\sec ^{2} 1 / 2 \theta=1+t^{2} \quad$ M1
Clearly get/derive AG A1

M1
Get $1 / 2 \pi-1$
A1
$6 \quad$ Get $k \sinh ^{-1} k_{1} x$
Get $1 / 3 \sinh ^{-1} 3 / 4 x$
Get $1 / 2 \sinh ^{-1} 2 / 3 x$
Use limits in their answers
Attempt to use correct \ln laws to set up a solvable equation in a
Get $a=2^{1 / 3} .3^{1 / 2}$

M1
A1 Or equivalent

7(i)

(ii) Reasonable attempt at product rule, giving two terms
Use correct Newton-Raphson at least once with their $\mathrm{f}^{\prime}(x)$ to produce an x_{2}
Get $x_{2}=2.0651$
Get $x_{3}=2.0653, x_{4}=2.0653$
(iii) Clearly derive coth $x=1 / 2 x$

Attempt to find second root e.g. symmetry Get ± 2.0653

8(i) (a) Get $1 / 2\left(\mathrm{e}^{\ln a}+\mathrm{e}^{-\ln a}\right)$
Use $\mathrm{e}^{\ln a}=a$ and $\mathrm{e}^{-\ln a}=1 / a$
Clearly derive AG
(b) Reasonable attempt to multiply out their attempts at exponential definitions of cosh and sinh
Correct expansion seen as $\mathrm{e}^{(x+y)}$ etc.
Clearly tidy to AG
(ii) Use $x=y$ and $\cosh 0=1$ to get AG
(iii) Attempt to expand and equate coefficients

Attempt to eliminate R (or a) to set up a solvable equation in a (or R)

Get $a=3 / 2$ (or $R=12$)
Replace for a (or R) in relevant equation to set up solvable equation in R (or a)
Get $R=12($ or $a=3 / 2)$
(iv) Quote/derive $\left(\ln ^{3} / 2,12\right)$

9(i) Use $\sin \theta \cdot \sin ^{n-1} \theta$ and parts

M1
B1

B1 B1 $\sqrt{ }$

B1 $y= \pm 1$ asymptotes; may be implied if seen as on graph

B1 AG; allow derivation from AG Two roots only

A1 Ignore if $a=2 / 3$ also given
B1 $\sqrt{ } \quad$ On their R and a
y-axis asymptote; equation may be implied if clear

Shape on

May be implied
One correct at any stage if reasonable cao; or greater accuracy which rounds
\pm their iteration in part (ii)

4 terms in each

$$
\begin{aligned}
(13 & =R \cosh \ln a=R\left(a^{2}+1\right) / 2 a \\
5 & \left.=R \sinh \ln a=R\left(a^{2}-1\right) / 2 a\right)
\end{aligned}
$$

SC
If exponential definitions used, $8 \mathrm{e}^{x}+18 \mathrm{e}^{-x}=R \mathrm{e}^{x} / a+R a \mathrm{e}^{-x}$ and same scheme follows

Reasonable attempt with 2 parts, one yet to be integrated

Get
$-\cos \theta \cdot \sin ^{n-1} \theta+(n-1) \int \sin ^{n-2} \theta \cdot \cos ^{2} \theta \mathrm{~d} \theta$
Replace $\cos ^{2}=1-\sin ^{2}$
Clearly use limits and get AG
(ii)
(a) Solve for $r=0$ for at least one θ
Get $(\theta)=0$ and π
(b)Correct formula used; correct r Use $6 I_{6}=5 I_{4}, 4 I_{4}=3 I_{2}$
Attempt I_{0} (or I_{2})
Replace their values to get I_{6}
Get $5 \pi / 32$
Use symmetry to get $5 \pi / 32$

Or

Correct formula used; correct $r \quad$ M1
Reasonable attempt at formula
$(2 i \sin \theta)^{6}=\left(z-{ }^{1} / z\right)^{6}$
Attempt to multiply out both sides
(7 terms)
Get correct expansion A1
Convert to trig. equivalent and integrate their expression
Get $5 \pi / 32$

Or

Correct formula used; correct r M1
Use double-angle formula and attempt to cube (4 terms)
Get correct expression A1
Reasonable attempt to put $\cos ^{2} 2 \theta$ into integrable form and integrate M1
Reasonable attempt to integrate $\cos ^{3} 2 \theta$ as e.g. $\cos ^{2} 2 \theta \cdot \cos 2 \theta$

M1
M1
M1
M1
M1
M1
A1

M1
cwo

B1 General shape (symmetry stated or approximately seen)

B1 Tangents at $\theta=0, \pi$ and $\max r$ seen

May be $\int r^{2} \mathrm{~d} \theta$ with correct limits At least one
$\left(I_{0}=1 / 2 \pi\right)$

May be implied but correct use of limits must be given somewhere in answer
Signs need to be carefully considered
θ need not be correct Ignore extra answers out of range

Get $5 \pi / 32$

4727 Further Pure Mathematics 3

1	$\left(\frac{1}{2} \sqrt{3}+\frac{1}{2} \mathrm{i}\right)^{\frac{1}{3}}=\left(\cos \frac{1}{6} \pi+\mathrm{i} \sin \frac{1}{6} \pi\right)^{\frac{1}{3}}$	B1	For $\arg z=\frac{1}{6} \pi$ seen or implied
	$=\cos \frac{1}{18} \pi+\mathrm{i} \sin \frac{1}{18} \pi$,	M1	For dividing $\arg z$ by 3
	$\cos \frac{13}{18} \pi+\mathrm{i} \sin \frac{13}{18} \pi$,	A1	For any one correct root
	$\cos \frac{25}{18} \pi+\mathrm{i} \sin \frac{25}{18} \pi$	A1 4	For 2 other roots and no more in range 0, , $\theta<2 \pi$
4			
2 (i)	$\frac{1}{5} \mathrm{e}^{-\frac{1}{3} \pi \mathrm{i}}$	B1 1	For stating correct inverse in the form $r \mathrm{e}^{\mathrm{i} \theta}$
(ii)	$r_{1} \mathrm{e}^{\mathrm{i} \theta} \times r_{2} \mathrm{e}^{\mathrm{i} \phi}=r_{1} r_{2} \mathrm{e}^{\mathrm{i}(\theta+\phi)}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & \mathbf{2} \end{array}$	For stating 2 distinct elements multiplied For showing product of correct form
(iii)	$\begin{aligned} & Z^{2}=\mathrm{e}^{2 \mathrm{i} \gamma} \\ & \Rightarrow \mathrm{e}^{2 \mathrm{i} \gamma-2 \pi \mathrm{i}} \end{aligned}$	$\begin{array}{ll} \text { B1 } \\ \text { B1 } & \mathbf{2} \end{array}$	For $\mathrm{e}^{2 \mathrm{i} \gamma}$ seen or implied For correct answer. aef
5			
3 (i)	$\begin{aligned} & {[6-4 \lambda,-7+8 \lambda,-10+7 \lambda] \text { on } p} \\ & \Rightarrow 3(6-4 \lambda)-4(-7+8 \lambda)-2(-10+7 \lambda)=8 \\ & \Rightarrow \lambda=1 \Rightarrow(2,1,-3) \end{aligned}$	B1 M1 A1 3	For point on l seen or implied For substituting into equation of p For correct point. Allow position vector
(ii)	METHOD 1		
	$\mathbf{n}=[-4,8,7] \times[3,-4,-2]$	$\begin{aligned} & \text { M1* } \\ & \text { M1 } \\ & \text { (*dep) } \end{aligned}$	For direction of l and normal of p seen For attempting to find $\mathbf{n}_{1} \times \mathbf{n}_{2}$
	$\mathbf{n}=k[12,13,-8]$	A1	For correct vector
	$(2,1,-3)$ OR ($6,-7,-10)$	M1	For finding scalar product of their point on l with their attempt at \mathbf{n}, or equivalent For correct equation, aef cartesian
	$\Rightarrow 12 x+13 y-8 z=61$	A1 5	
METHOD 2			
	$\begin{aligned} \mathbf{r}= & {[2,1,-3] O R[6,-7,-10] } \\ & +\lambda[-4,8,7]+\mu[3,-4,-2] \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \sqrt{ } \end{aligned}$	For stating eqth of plane in parametric form (may be implied by next stage), using [2, 1, -3] (ft from (i)) $\operatorname{Or}[6,-7,-10], \mathbf{n}_{1}$ and \mathbf{n}_{2} (as above)
	$x=2-4 \lambda+3 \mu$	M1	For writing as 3 linear equations
	$y=1+8 \lambda-4 \mu$	M1	For attempting to eliminate λ and μ
	$z=-3+7 \lambda-2 \mu$		
	$\Rightarrow 12 x+13 y-8 z=61$	A1	For correct equation aef cartesian
METHOD 3			
$3(6+3 \mu)-4(-7-4 \mu)-2(-10-2 \mu)=8$		M1	For finding foot of perpendicular from point on l to p
	$\Rightarrow \mu=-2 \Rightarrow(0,1,-6)$	A1	For correct point or position vector
From 3 points $(2,1,-3),(6,-7,-10),(0,1,-6)$,			
	$\begin{aligned} & \mathbf{n}=\text { vector product of } 2 \text { of } \\ & {[2,0,3],[6,-8,-4],[-4,8,7]} \end{aligned}$		Use vector product of 2 vectors in plane
	$\Rightarrow \mathbf{n}=k[12,13,-8]$		
	$(2,1,-3)$ OR $(6,-7,-10)$	M1	For finding scalar product of their point on l with their attempt at \mathbf{n}, or equivalent For correct equation aef cartesian
	$\Rightarrow 12 x+13 y-8 z=61$	A1	
8			

4 (i) IF $\mathrm{e}^{\int \frac{1}{1-x^{2}} \mathrm{~d} x}=\mathrm{e}^{\frac{1}{2} \ln \frac{1+x}{1-x}}=\left(\frac{1+x}{1-x}\right)^{\frac{1}{2}}$
M1 For IF stated or implied. Allow $\pm \int$ and omission of
A1 $2 \mathrm{~d} x$
For integration and simplification to $\mathbf{A G}$
(intermediate step must be seen)
(ii) $\frac{\mathrm{d}}{\mathrm{d} x}\left(y\left(\frac{1+x}{1-x}\right)^{\frac{1}{2}}\right)=(1+x)^{\frac{1}{2}}$
$y\left(\frac{1+x}{1-x}\right)^{\frac{1}{2}}=\frac{2}{3}(1+x)^{\frac{3}{2}}+c$
$(0,2) \Rightarrow 2=\frac{2}{3}+c \Rightarrow c=\frac{4}{3}$
$y=\frac{2}{3}(1+x)(1-x)^{\frac{1}{2}}+\frac{4}{3}\left(\frac{1-x}{1+x}\right)^{\frac{1}{2}}$
M1* For multiplying both sides by IF

M1 \quad For integrating RHS to $k(1+x)^{n}$
A1 For correct equation (including $+c$)
In either order:
M1 For substituting (0,2) into their GS (including $+c$)
(*dep)
M1 For dividing solution through by IF,
(*dep) including dividing c or their numerical value for c
A1 6 For correct solution
aef (even unsimplified) in form $y=\mathrm{f}(x)$

8

5 (i)	$m^{2}-6 m+9(=0) \Rightarrow m=3$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	For attempting to solve correct auxiliary equation For correct m
	$\mathrm{CF}=(A+B x) \mathrm{e}^{3 x}$	A1 3	For correct CF
(ii)	$k \mathrm{e}^{3 x}$ and $k x \mathrm{e}^{3 x}$ both appear in CF	B1 1	For correct statement
(iii)	$y=k x^{2} \mathrm{e}^{3 x} \Rightarrow y^{\prime}=2 k x \mathrm{e}^{3 x}+3 k x^{2} \mathrm{e}^{3 x}$	M1 A1	For differentiating $k x^{2} \mathrm{e}^{3 x}$ twice For correct y^{\prime} aef
	$\Rightarrow y^{\prime \prime}=2 k \mathrm{e}^{3 x}+12 k x \mathrm{e}^{3 x}+9 k x^{2} \mathrm{e}^{3 x}$	A1	For correct $y^{\prime \prime}$ aef
	$\begin{aligned} & \Rightarrow \\ & k \mathrm{e}^{3 x}\left(2+12 x+9 x^{2}-12 x-18 x^{2}+9 x^{2}\right)=\mathrm{e}^{3 x} \end{aligned}$	M1	For substituting $y^{\prime \prime}, y^{\prime}, y$ into DE
	$\Rightarrow k=\frac{1}{2}$	A1 5	For correct k
9			

6 (i) METHOD 1
$\mathbf{n}_{1}=[1,1,0] \times[1,-5,-2] \quad$ M1

$$
=[-2,2,-6]=k[1,-1,3]
$$

Use $(2,2,1)$
$\Rightarrow \mathbf{r} .[-2,2,-6]=-6 \Rightarrow \mathbf{r} .[1,-1,3]=3$
METHOD 2
$x=2+\lambda+\mu$
$y=2+\lambda-5 \mu$
$z=1 \quad-2 \mu$
$\Rightarrow x-y+3 z=3$
$\Rightarrow \mathbf{r} \cdot[1,-1,3]=3$

For attempting to find vector product of the pair of direction vectors
For correct \mathbf{n}_{1}
For substituting a point into equation
4 For correct equation. aef in this form

For $\mathbf{r}=\mathbf{a}+t \mathbf{b}$
METHOD 1
$\mathbf{b}=[1,-1,3] \times[7,17,-3] \quad$ M1 \quad For attempting to find $\mathbf{n}_{1} \times \mathbf{n}_{2}$
$=k[2,-1,-1] \quad \mathrm{A} 1 \sqrt{ }$
e.g. x, y or $z=0$ in $\left\{\begin{aligned} x-y+3 z & =3 \\ 7 x+17 y-3 z & =21\end{aligned}\right.$
$\Rightarrow \mathbf{a}=\left[0, \frac{3}{2}, \frac{3}{2}\right]$ OR $[3,0,0]$ OR $[1,1,1]$
Line is (e.g.) $\mathbf{r}=[1,1,1]+t[2,-1,-1]$
M1 For attempting to find a point on the line
$\mathrm{A} 1 \sqrt{ } \sqrt{ } \quad$ For a correct vector. ft from equation in (i) SR a correct vector may be stated without working
$\mathrm{A} 1 \sqrt{ } 5$ For stating equation of line ft from \mathbf{a} and \mathbf{b} $\mathbf{S R}$ fora $=[2,2,1]$ stated award M0

METHOD 2

Solve $\left\{\begin{aligned} x-y+3 z & =3 \\ 7 x+17 y-3 z & =21\end{aligned}\right.$
by eliminating one variable (e.g. z)
Use parameter for another variable (e.g. x) to find other variables in terms of t
(eg) $y=\frac{3}{2}-\frac{1}{2} t, z=\frac{3}{2}-\frac{1}{2} t$

Line is $(\mathrm{eg}) \mathbf{r}=\left[0, \frac{3}{2}, \frac{3}{2}\right]+t[2,-1,-1]$

In either order:
For attempting to solve equations

M1 For attempting to find parametric solution
A1 $\sqrt{ } \quad$ For correct expression for one variable
A1 $\sqrt{ } \quad$ For correct expression for the other variable ft from equation in (i) for both
$\mathrm{A} 1 \sqrt{ } \quad$ For stating equation of line. ft from parametric solutions

METHOD 3
eg x, y or $z=0$ in $\left\{\begin{aligned} x-y+3 z & =3 \\ 7 x+17 y-3 z & =21\end{aligned}\right.$
$\Rightarrow \mathbf{a}=\left[0, \frac{3}{2}, \frac{3}{2}\right]$ OR $[3,0,0]$ OR $[1,1,1]$
eg $[3,0,0]-[1,1,1]$
M1
$\mathbf{b}=k[2,-1,-1]$
Line is $(\mathrm{eg}) \mathbf{r}=[1,1,1]+t[2,-1,-1]$

For attempting to find a point on the line
For a correct vector. ft from equation in (i)
SR a correct vector may be stated without working $\mathbf{S R}$ for $=[2,2,1]$ stated award M0
For finding another point on the line and using it with the one already found to find \mathbf{b}
$\mathrm{A} 1 \sqrt{ } \quad$ For a correct vector. ft from equation in (i)
$\mathrm{A} 1 \sqrt{ } \quad$ For stating equation of line. ft from \mathbf{a} and \mathbf{b}

For writing as 3 linear equations
For attempting to eliminate λ and μ
For correct cartesian equation
For correct equation. aef in this form

6 (ii) METHOD 4
contd
A point on Π_{1} is
$[2+\lambda+\mu, 2+\lambda-5 \mu, 1-2 \mu]$
M1
For using parametric form for Π_{1} and substituting into Π_{2}
On $\Pi_{2} \Rightarrow$
$[2+\lambda+\mu, 2+\lambda-5 \mu, 1-2 \mu] \cdot[7,17,-3]=21 \quad \mathrm{~A} 1$
$\Rightarrow \lambda-3 \mu=-1$
A1 For correct equation
Line is (e.g.)
$\mathbf{r}=[2,2,1]+(3 \mu-1)[1,1,0]+\mu[1,-5,-2]$
$\Rightarrow \mathbf{r}=[1,1,1]$ or $\left[\frac{7}{3}, \frac{1}{3}, \frac{1}{3}\right]+t[2,-1,-1]$
M1 \quad For substituting into Π_{1} for λ or μ
A1 For stating equation of line

9

7 (i)
$\cos 3 \theta+\mathrm{i} \sin 3 \theta=c^{3}+3 \mathrm{i} c^{2} s-3 c s^{2}-\mathrm{is}{ }^{3}$
$\Rightarrow \cos 3 \theta=c^{3}-3 c s^{2}$ and
$\sin 3 \theta=3 c^{2} s-s^{3}$
$\Rightarrow \tan 3 \theta=\frac{3 c^{2} s-s^{3}}{c^{3}-3 c s^{2}}$
$\tan 3 \theta=\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}=\frac{\tan \theta\left(3-\tan ^{2} \theta\right)}{1-3 \tan ^{2} \theta}$

M1 \quad For using de Moivre with $n=3$
A1 For both expressions in this form (seen or implied) SR For expressions found without de Moivre M0 A0
M1 For expressing $\frac{\sin 3 \theta}{\cos 3 \theta}$ in terms of c and s
A1 4 For simplifying to AG
(ii) (a) $\theta=\frac{1}{12} \pi \Rightarrow \tan 3 \theta=1$
$\Rightarrow 1-3 t^{2}=t\left(3-t^{2}\right) \Rightarrow \quad$ B1 $\quad \mathbf{1} \quad$ For both stages correct AG
$t^{3}-3 t^{2}-3 t+1=0$
(b) $\quad(t+1)\left(t^{2}-4 t+1\right)=0$

M1 For attempt to factorise cubic
A1 For correct factors
$\Rightarrow(t=-1), t=2 \pm \sqrt{3}$

- sign for smaller root \Rightarrow

A1 For correct roots of quadratic
$\tan \frac{1}{12} \pi=2-\sqrt{3}$
A1 4 For choice of - sign and correct root AG
(iii)

$$
\begin{aligned}
& \mathrm{d} t=\left(1+t^{2}\right) \mathrm{d} \theta \\
& \Rightarrow \int_{0}^{\frac{1}{12} \pi} \tan 3 \theta \mathrm{~d} \theta \\
& =\left[\frac{1}{3} \ln (\sec 3 \theta)\right]_{0}^{\frac{1}{12} \pi}=\frac{1}{3} \ln \left(\sec \frac{1}{4} \pi\right) \\
& =\frac{1}{3} \ln \sqrt{2}=\frac{1}{6} \ln 2
\end{aligned}
$$

For differentiation of substitution and use of $\sec ^{2} \theta=1+\tan ^{2} \theta$

B1 For integral with correct θ limits seen

M1 For integrating to $k \ln (\sec 3 \theta)$ OR $k \ln (\cos 3 \theta)$
For substituting limits and $\sec \frac{1}{4} \pi=\sqrt{2}$ OR $\cos \frac{1}{4} \pi=\frac{1}{\sqrt{2}}$ seen

A1 5 For correct answer aef

8 (i) $\quad \begin{aligned} & a^{2}=(a p)^{2}=a p a p \Rightarrow a=p a p \\ & p^{2}=(a p)^{2}=a p a p \Rightarrow p=a p a\end{aligned}$
$p^{2}=(a p)^{2}=a p a p \Rightarrow p=a p a$
(ii) $\quad\left(p^{2}\right)^{2}=p^{4}=e \Rightarrow$ order $p^{2}=2$
$\left(a^{2}\right)^{2}=\left(p^{2}\right)^{2}=e \Rightarrow \operatorname{order} a=4 \quad$ B1 \quad For correct order with no incorrect working seen
$(a p)^{4}=a^{4}=e \Rightarrow$ order $a p=4$
$\left(a p^{2}\right)^{2}=a p^{2} a p^{2}=a p \cdot a \cdot p=a^{2}$
OR $a p^{2}=a \cdot a^{2}=a^{3} \Rightarrow$
$\left(a p^{2}\right)^{2}=a^{6}=a^{2}$
\Rightarrow order $a p^{2}=4$
(iii) METHOD 1
$p^{2}=a^{2}, a p^{2}=a^{3}$
M2 For use of the given properties to simplify
$\Rightarrow\left\{e, a, p^{2}, a p^{2}\right\}=\left\{e, a, a^{2}, a^{3}\right\}$
which is a cyclic group

B1 For correct order with no incorrect working seen

B1 For correct order with no incorrect working seen

M1 For relevant use of (i) or given properties

A1 5 For correct order with no incorrect working seen
B1 For use of given properties to obtain AG
B1 $2 \quad$ For use of given properties to obtain $\mathbf{A G}$
SR allow working from AG to obtain relevant properties

METHOD 2

	e	a	p^{2}	$a p^{2}$
e	e	a	p^{2}	$a p^{2}$
a	a	p^{2}	$a p^{2}$	e
p^{2}	p^{2}	$a p^{2}$	e	a
$a p^{2}$	$a p^{2}$	e	a	p^{2}

Completed table is a cyclic group
B2
For justifying that the set is a group
METHOD 3

	e	a	p^{2}	$a p^{2}$
e	e	a	p^{2}	$a p^{2}$
a	a	p^{2}	$a p^{2}$	e
p^{2}	p^{2}	$a p^{2}$	e	a
$a p^{2}$	$a p^{2}$	e	a	p^{2}

M1 For attempting closure with all 9 non-trivial products seen
A1 For all 16 products correct

B1 For stating identity
B1 \quad For justifying inverses $\left(e^{-1}=e\right.$ may be assumed $)$

Identity $=e$
Inverses exist since
EITHER: e is in each row/column
OR: p^{2} is self-inverse; $a, a p^{2}$ form an
(iv) METHOD 1 M1 For attempting to find a non-commutative pair of
e.g. $\left.\begin{array}{l}a . a p=a^{2} p=p^{3} \\ a p . a=p\end{array}\right\} \Rightarrow$ not
commutative
elements, at least one involving a (may be embedded in a full or partial table)
M1 For simplifying elements both ways round
B1 For a correct pair of non-commutative elements
A1 4 For stating Q non-commutative, with a clear argument

METHOD 2
Assume commutativity, so (eg) $a p=p a$
(i) \Rightarrow
$p=a p \cdot a \Rightarrow p=p a \cdot a=p a^{2}=p p^{2}=p^{3}$
M1 For using (i) and/or given properties
But p and p^{3} are distinct
$\Rightarrow Q$ is non-commutative

B1 For obtaining and stating a contradiction
A1 For stating Q non-commutative, with a clear argument

4728 Mechanics 1

1 i	$\begin{aligned} & x^{2}+(3 x)^{2}=6^{2} \\ & 10 x^{2}=36 \\ & x=1.9(0) \quad(1.8973 . .) \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \end{gathered}$	Using Pythagoras, 2 squared terms May be implied Not surd form unless rationalised $(3 \sqrt{ } 10) / 5$, $(6 \sqrt{ } 10) / 10$
ii	$\begin{aligned} & \tan \theta=3 x / x(=3 \times 1.9 / 1.9)=3 \\ & \theta=71.6^{\circ} \quad(71.565 . .) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A2 } \\ & {[3]} \end{aligned}$	Must target correct angle. Accept $\sin \theta=3 \times 1.9 / 6$ or $\cos \theta=1.9 / 6$ which give $\theta=71.8^{\circ}, \theta=71.5^{\circ}$ respectively, A1. SR $\theta=71.6^{\circ}$ from $\tan \theta=3 x / x$ if x is incorrect; x used A1, no evidence of x used A2
2 i		$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & {[2]} \end{aligned}$	Inverted V shape with straight lines. Starts at origin, ends on t-axis, or horizontal axis if no labelling evident
ii	$\begin{aligned} & 6=3 v / 2 \\ & v=4 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \end{gathered}$	Not awarded if special (right angled, isosceles) triangle assumed, or $s=(u+v) t / 2$, or max v at specific t.
iii	$\begin{aligned} & \mathrm{T} \text { accn }=4 / 2.4 \text { or } \mathrm{s} \text { accn }=16 /(2 \times 2.4) \\ & \mathrm{T} \text { accn }=12 / 3 \text { s or s accn }=10 / 3 \\ & \text { Deceleration }=4 /(3-12 / 3) \text { or } 16 / 2(6-10 / 3) \\ & \text { Deceleration }=3 \mathrm{~ms}^{-2} \end{aligned}$	$\begin{aligned} & \text { M1* } \\ & \text { A1 } \\ & \text { D}^{*} \text { M1 } \\ & \text { A1 } \\ & \quad[4] \end{aligned}$	Uses $t=v / a$ or $s=v^{2} / 2 a$. May be implied Accept 4/(3-1.67) or 16/2(6-3.33) Accept 3.01; award however $v=4$ obtained in (ii). $a=-3$ gets A0.
3 i	$\begin{align*} & 0.8 \mathrm{~g} \sin 30 \\ & 0.8 \times 0.2 \\ & 0.8 \times 9.8 \sin 30-T=0.8 \mathrm{x} 0.2 \\ & T=3.76 \mathrm{~N} \tag{AG} \end{align*}$	$\begin{gathered} \hline \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ {[4]} \end{gathered}$	Not for 3.92 stated without justification Or 0.16 Uses N2L // to slope, 3 non-zero terms, inc $m a$ Not awarded if initial B1 withheld.
ii	$\begin{aligned} & 3.76-F=3 \times 0.2 \\ & F=3.16 \\ & 3.16=\mu \times 3 \times 9.8 \\ & \mu=0.107 \quad(0.10748) \end{aligned}$	M1 A1 A1 M1 A1 $[5]$	Uses N2L, B alone, 3 non-zero terms Needs correct value of T. May be implied. Uses $F=\mu R$ (Accept with $R=3$, but not with $R=0.8 \mathrm{~g}(\cos 30), F=0.6, F=3.76, F=f(\operatorname{mass} P))$ Not 0.11, 0.108 (unless it comes from using $\mathrm{g}=9.81$ consistently through question.

4 i	$\begin{aligned} & v^{2}=7^{2}-2 \times 9.8 \times 2.1 \\ & v=2.8 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \end{gathered}$	Uses $v^{2}=u^{2}-2 \mathrm{~g} s$. Accept $7^{2}=u^{2}+2 \mathrm{~g} s$
ii	$\begin{aligned} & v=0 \\ & 0^{2}=7^{2}-2 \times 9.8 s \\ & s=2.5 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & {[3]} \end{aligned}$	Velocity $=0$ at greatest height Uses $0=u^{2}-2 \mathrm{~g}$ s. Accept $7^{2}=2 \times 9.8 s$.
iii	$v=-5.7$ (or $t=0.71$ oef to reach greatest height) $\begin{aligned} & -5.7=7-9.8 t \text { or } 5.7=(0+) 9.8 T \\ & t=1.3(0) \mathrm{s} \quad(1.2959 . .) \end{aligned}$	$\begin{aligned} & \hline \mathrm{B} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & {[3]} \end{aligned}$	Allows for change of direction Uses $v=u+$ or $-\mathrm{g} t$. Not 1.29 unless obtained from $\mathrm{g}=9.81$ consistently
5 i	$\begin{aligned} & 0.5 \times 6=0.5 v+m(v+1) \\ & 3=0.5 v+m v+m \\ & v(m+0.5)=-m+3 \end{aligned}$ AG	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \end{gathered}$	Uses CoLM. Includes g throughout MR-1
ii	$\begin{aligned} & \text { Momentum before }=+/-(4 m-0.5 \times 2) \\ & +/-(4 m-0.5 \times 2)=m v+0.5(v+1) \\ & 4 m-0.5 \times 2=m v+0.5(v+1) \\ & v(m+0.5)=4 m-1.5 \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	Includes g throughout MR-1 Needs opposite directions in CoLM on "before" side only. RHS in format $a m+b$ or $b+a m$. Ignore values for a and b if quoted.
iii	$\begin{aligned} & 4 m-1.5=-m+3 \\ & 5 m=4.5 \\ & m=0.9 \mathrm{~kg} \\ & 0.9+v(0.9+0.5)=3 \text { or } 4 \times 0.9-1.5= \\ & v(0.9+0.5) \\ & v=(3-0.9) /(0.9+0.5)=2.1 / 1.4 \\ & v=1.5 \mathrm{~ms}^{-1} \end{aligned}$	M1 A1 M1 A1 [4]	Attempts to obtain eqn in 1 variable from answers in (i) and (ii) Ignore $m=-0.5$ if seen Substitutes for $m=0.9$ in any m, v equation obtained earlier.
6 ia b	$\begin{aligned} & \text { Perp }=10 \cos 20(=9.3967 \text { or } 9.4) \\ & / /=10 \sin 20(=3.4202) \\ & \mu=10 \sin 20 / 10 \cos 20=\tan 20(=3.42 / 9.4) \\ & \mu=0.364 \quad(0.36397 . .) \quad \mathrm{AG} \end{aligned}$	B1 B1 $[2]$ M1 A1 $[2]$	Includes g, MR -1 in part (i). Accept -ve values. Must use ${ }_{\mid} F_{1}=\mu_{l}{ }^{\prime} R_{1}^{\prime}$ Accept after inclusion of g twice
ii	$\begin{aligned} & \text { No misread, and resolving of } 10 \text { and } T \\ & \text { required } \\ & R=10 \cos 20+T \cos 45 \\ & F=T \cos 45-10 \sin 20 \text { or } T \cos 45=\mu R+ \\ & 10 \sin 20 \\ & T \cos 45-3.42=0.364(9.4+T \cos 45) \\ & 0.707 T-3.42=3.42+0.257 T \\ & 0.45 T=6.84 \\ & T=15.2 \mathrm{~N} \quad(15.209 . .) \end{aligned}$	$\begin{aligned} & \hline \text { M1* } \\ & \text { A1 } \\ & \text { M1* } \\ & \text { A1 } \\ & \text { D*M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[7]} \end{aligned}$	3 term equation perp plane, 2 unknowns $9.4+0.707 T$ (accept $9.4+.71 T$) 3 term equation // plane, 2 unknowns $0.707 T$ - 3.42 (accept $0.71 T-3.4$) Substitutes for F and R in $F=0.364 R$ Award final A1 only for $T=149 \mathrm{~N}$ after using 10 g for weight

7 i	$\begin{aligned} & a=\mathrm{d} v / \mathrm{d} t \\ & a=6-2 t \mathrm{~ms}^{-2} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	Differentiation attempt. Answer 6-t implies division by t
ii	$\begin{aligned} & s=\int v \mathrm{~d} t \\ & s=\int 6 t-t^{2} \mathrm{~d} t \\ & s=3 t^{2}-t^{3} / 3(+c) \\ & t=0, v=0, c=0 \\ & t=3, s=3 \times 3^{2}-3^{3} / 3 \\ & s=18 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { M1* } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { D*M1 } \\ & \text { A1 } \\ & {[5]} \end{aligned}$	Integration attempt on v Award if limits 0,3 used Requires earlier integration Does not require B1 to be earned.
iii	$\begin{aligned} & \text { Distance remaining }(=100-18)=82 \\ & \text { Total time }=3+82 / 9 \\ & T=12.1 \mathrm{~s} \quad(121 / 9) \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & {[3]} \end{aligned}$	Numerator not 100 Not 109/9
iv	$\begin{aligned} & \text { Distance before slows }=18+(22-3) \mathrm{x} 9 \\ & \text { Distance while decelerating }=200-189=11 \\ & 11=9 t-0.3 t^{2} \text { or } 11=(9+8.23) t / 2 \text { or } 8.23=9- \\ & 0.6 t \\ & t=1.28 \quad(1.2765 . ., \text { accept } 1.3) \\ & T=23.3 \mathrm{~s}(23.276 . .) \end{aligned}$	$\begin{aligned} & \text { M1* } \\ & \text { A1 } \\ & \text { D*M1 } \\ & \text { A1 } \\ & \text { D*M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \quad[7] \end{aligned}$	($=189 \mathrm{~m}$) Two sub-regions considered Accept 10.99. 10.9 penalise -1PA. Uses $s=u t-0.5 \times 0.6 t^{2}$, or $v^{2}=u^{2}-2 \times 0.6 s$ with $s=(u+v) t / 2 \text { or } v=u+a t$ Finds t. (If QE, it must have 3 terms and smaller positive root chosen.)

4729 Mechanics 2

1 (i)	$\begin{aligned} & 1 / 2 \times 75 \times 12^{2} \text { or } 1 / 2 \times 75 \times 3^{2} \quad \text { (either KE) } \\ & 75 \times 9.8 \times 40 \quad \text { (PE) } \\ & R \times 180(\text { change in energy }=24337) \\ & 1 / 2 \times 75 \times 12^{2}=1 / 2 \times 75 \times 3^{2}+75 \times 9.8 \times 40-R \times 180 \\ & R=135 \mathrm{~N} \end{aligned}$	B1 B1 B1 M1 A1 5	M1 $12^{2}=3^{2}+2 a \times 180$ A1 $a=0.375$ (3/8) M1 $75 \times 9.8 \times \sin \theta-R=75 a$ A1 $R=135$ (max 4 for no energy)	5

2 (i)	$\begin{aligned} & R=F=P / v=44000 / v=1400 \\ & v=31.4 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$		
(ii)	$\begin{aligned} & 44000 / v=1400+1100 \times 9.8 \times 0.05 \\ & v=22.7 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } \\ \text { A1 } & \\ \text { A1 } & 3 \end{array}$	must have g	
(iii)	$\begin{aligned} & 22000 / 10+1100 \times 9.8 \times 0.05-1400 \\ & =1100 a \\ & a=1.22 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } & 3 \end{array}$		8

3 (i)	$\cos \theta=5 / 13 \text { or } \sin \theta=12 / 13 \text { or } \theta=67.4^{\circ}$ $\begin{aligned} & 0.5 \times F \sin \theta=70 \times 1.4+50 \times 2.8 \\ & F=516 \mathrm{~N} \end{aligned}$	$\begin{array}{ll} \hline \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } & 4 \end{array}$	any one of these moments about A (ok without 70) $0.5 \sin \theta=0.4615$ SR 1 for 303 (omission of beam)
(ii)	$F \sin \theta=120+Y$ (resolving vertically) $Y=356$ \boldsymbol{J} their $\mathrm{F} \times 12 / 13-120$ $X=F \cos \theta$ (resolving horizontally) $X=198$ \boldsymbol{f} their $F \times 5 / 13$ Force $=\sqrt{ }\left(356^{2}+198^{2}\right)$ 407 or 408 N	$\begin{array}{ll}\text { M1 } & \\ \text { A1 } & \boldsymbol{f} \\ \text { M1 } & \\ \text { A1 } & f \\ \text { M1 } & \\ \text { A1 } & 6\end{array}$	M1/A1 for moments (B) $Y \times 2.8+1.4 \times 70=2.3 \times 516 \mathbf{} \times 12 / 13$ (C) $0.5 \times Y=0.9 \times 70+2.3 \times 50$ (D) $1.2 X=1.4 \times 70+2.8 \times 50$

$\mathbf{4}$ (i)	$T=0.4 \times 0.6 \times 2^{2}$	M1	
	$T=0.96 \mathrm{~N}$	A1 2	
(ii)	$S-T$	B1	may be implied
	$S-T=0.1 \times 0.3 \times 2^{2}$	M1	
		A1	
	$S=1.08$	A1 $\mathbf{4}$	
(iii)	$v=r \omega$	M1	
	$v_{P}=0.6$	A1	
	$v_{B}=1.2$	A1	
	$1 / 2 \times 0.1 \times 0.6^{2}+1 / 2 \times 0.4 \times 1.2^{2}$	M1	$(0.018+0.288)$ separate speeds
	0.306	A1 $\mathbf{5}$	

5 (i)	$\begin{aligned} & d=(2 \times 6 \sin \pi / 4) / 3 \pi / 4 \\ & \bar{d}=3.60 \end{aligned}$		$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \end{array}$	must be correct formula with rads AG	
(ii)	$\begin{aligned} & \nexists \cos 45^{\circ}=" 2.55 " \\ & 5 \bar{x}=3 \times 3+2 \times " 2.55 " \\ & \bar{x}=2.82 \\ & 5 \bar{y}=3 \times 6+2 \times(12+" 2.55 ") \\ & \bar{y}=9.42 \end{aligned}$		B1 M1 A1 A1 M1 A1 A1 7	may be implied moments must not have areas $2 \mathrm{~kg} / 3 \mathrm{~kg}$ misread (swap) gives $(2.73,11.13) \theta=21.7^{\circ}$ $(\operatorname{MR}-2)(\max 7$ for (ii) $+($ iii $)$ SR -1 for \bar{x}, \bar{y} swap	
(iii)	$\begin{aligned} & \tan \theta=2.82 / 8.58 \\ & \theta=18.2^{\circ} \end{aligned}$	J	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & 2 \end{array}$	$\begin{aligned} & \text { M0 for their } \bar{x} / \bar{y} \\ & f \text { their } \bar{x} /(18-\bar{y}) \end{aligned}$	11

7(i)	$\begin{align*} & 9=17 \cos 25^{\circ} \times t \\ & t=0.584 \quad\left(\text { or } 9 / 17 \cos 25^{\circ}\right) \\ & d=17 \sin 25^{\circ} \times 0.584+1 / 2 \times 9.8 \times 0.584^{2} \\ & =h t \text { lost }(5.87) \\ & h=2.13 \end{align*}$	M1 A1 M1 A1 A1 5	$\begin{aligned} & \text { B1 } y=x \tan \theta-4.9 x^{2} / v^{2} \cos ^{2} \theta \\ & \text { M1/A } 1 y=9 \tan \left(-25^{\circ}\right)-4.9 \times 9^{2} / 17^{2} \cos ^{2} 25^{\circ} \end{aligned}$ $\text { A1 } y=-5.87$ 2.13
(ii)	$\begin{aligned} & v_{h}=17 \cos 25^{\circ} \quad(15.4) \\ & v_{v}=17 \sin 25^{\circ}+9.8 \times 0.584 \\ & v_{v}{ }^{2}=\left(17 \sin 25^{\circ}\right)^{\circ}+2 \times 9.8 \times 5.87 \\ & v_{v}=12.9 \\ & \tan \theta=12.9 / 15.4 \\ & \theta=40.0^{\circ} \text { below horizontal } \end{aligned}$	B1 M1 A1 M1 A1 5	M1/A1 d $y / \mathrm{d} x=$ $\tan \theta-9.8 x / v^{2} \cos ^{2} \theta$ A1 $\mathrm{d} y / \mathrm{d} x=-0.838$ M1 $\tan ^{-1}(-.838)$ or 50.0° to vertical
(iii)	$\begin{aligned} & \text { speed }=\sqrt{ }\left(12.9^{2}+15.4^{2}\right) \\ & \\ & 1 / 2 m v^{2}=1 / 2 m \times 20.1^{2} \times 0.7 \\ & v=16.8 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{array}{\|ll} \hline \text { M1 } \\ \text { A1 } & f \\ \text { M1 } & \\ \text { A1 } & 4 \end{array}$	(20.1) NB 0.3 instead of 0.7 gives 11.0 (M0)

4730 Mechanics 3

1 i	Horiz. comp. of vel. after impact is $4 \mathrm{~ms}^{-1}$ Vert. comp. of vel. after impact is $\sqrt{5^{2}-4^{2}}=3 \mathrm{~ms}^{-1}$ Coefficient of restitution is 0.5	$\begin{gathered} \hline \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ {[3]} \end{gathered}$	May be implied AG From e $=3 / 6$
ii	Direction is vertically upwards Change of velocity is $3-(-6)$ Impulse has magnitude 2.7 Ns	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	From $m(\Delta v)=0.3 \times 9$
2 i	Horizontal component is 14 N $\begin{aligned} & 80 \times 1.5=14 \times 1.5+3 Y \quad \text { or } \\ & 3(80-Y)=80 \times 1.5+14 \times 1.5 \text { or } \\ & 1.5(80-Y)=14 \times 0.75+14 \times 0.75+1.5 Y \end{aligned}$ $\text { Vertical component is } 33 \mathrm{~N} \text { upwards }$	B1 M1 A1 A1 [4]	For taking moments for $A B$ about A or B or the midpoint of $A B$ AG
ii	Horizontal component at C is 14 N [Vertical component at C is $\begin{aligned} & \left.(\pm) \sqrt{50^{2}-14^{2}}\right] \\ & {[W=(\pm) 48-33]} \end{aligned}$ Weight is 15 N	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { DM1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	May be implied for using $R^{2}=H^{2}+V^{2}$ For resolving forces at C vertically
3 i	$\begin{aligned} & 4 \times 3 \cos 60^{\circ}-2 \times 3 \cos 60^{\circ}=2 b \\ & b=1.5 \\ & \mathbf{j} \text { component of vel. of } B=(-) 3 \sin 60^{\circ} \\ & {\left[v^{2}=b^{2}+\left(-3 \sin 60^{\circ}\right)^{2}\right]} \end{aligned}$ Speed $\left(3 \mathrm{~ms}^{-1}\right)$ is unchanged [Angle with 1.o.c. $=\tan ^{-1}(3 \sin 60 \% 1.5)$] Angle is 60°.	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { B1ft } \\ & \text { M1 } \\ & \\ & \text { A1ft } \\ & \text { M1 } \\ & \text { A1ft } \\ & {[8]} \end{aligned}$	For using the p.c.mmtm parallel to l.o.c. ft consistent \sin / cos mix For using $v^{2}=b^{2}+v_{y}{ }^{2}$ AG ft - allow same answer following consistent $\sin /$ cos mix. For using angle $=\tan ^{-1}\left(\pm v_{y} / v_{x}\right)$ ft consistent $\sin /$ cos mix
ii	$\left[e\left(3 \cos 60^{\circ}+3 \cos 60^{\circ}\right)=1.5\right]$ $\text { Coefficient is } 0.5$	$\begin{gathered} \hline \text { M1 } \\ \text { A1ft } \\ {[2]} \end{gathered}$	For using NEL ft - allow same answer following consistent \sin / \cos mix throughout.

4 i	$\begin{aligned} & F-0.25 v^{2}=120 v(\mathrm{~d} v / \mathrm{d} x) \\ & F=8000 / v \\ & {\left[32000-v^{3}=480 v^{2}(\mathrm{~d} v / \mathrm{d} x)\right]} \\ & \frac{480 v^{2}}{v^{3}-32000} \frac{\mathrm{~d} v}{\mathrm{~d} x}=-1 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ [5]	For using Newton's second law with $a=v(\mathrm{~d} v / \mathrm{d} x)$ For substituting for F and multiplying throughout by $4 v$ (or equivalent) AG
ii	$\begin{aligned} & \int \frac{480 v^{2}}{v^{3}-32000} \mathrm{~d} v=-\int \mathrm{d} x \\ & 160 \ln \left(v^{3}-32000\right)=-x \quad(+A) \\ & 160 \ln \left(v^{3}-32000\right)=-x+160 \ln 32000 \\ & \text { or } \\ & 160 \ln \left(v^{3}-32000\right)-160 \ln 32000=-500 \\ & \left(v^{3}-32000\right) / 32000=e^{-x / 160} \\ & \text { Speed of } m / c \text { is } 32.2 \mathrm{~ms}^{-1} \end{aligned}$	M1 A1 M1 Alft B1ft B1 [6]	For separating variables and integrating For using $v(0)=40$ or $\left[160 \ln \left(v^{3}-32000\right)\right]^{v}{ }_{40}=[-x]^{500}{ }_{0}$ ft where factor 160 is incorrect but +ve , Implied by $\left(v^{3}-32000\right) / 32000=\mathrm{e}^{-3.125}$ ($\mathrm{or}=0.0439$..). ft where factor 160 is incorrect but +ve , or for an incorrect nonzero value of A
5 i	$\begin{aligned} & x_{\max }=\sqrt{1.5^{2}+2^{2}}-1.5(=1) \\ & {\left[T_{\max }=18 \times 1 / 1.5\right]} \\ & \text { Maximum tension is } 12 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	For using $T=\lambda x / L$
ii	(a) Gain in $\mathrm{EE}=2\left[18\left(1^{2}-0.2^{2}\right)\right] /(2 \times 1.5)$ (11.52) Loss in GPE $=2.8 \mathrm{mg}$ (27.44m) $\begin{aligned} & {[2.8 m \times 9.8=11.52]} \\ & m=0.42 \end{aligned}$ (b) $1 / 2 m v^{2}=m g(0.8)+2 \times 18 \times 0.2^{2} /(2 \times 1.5)$ or $1 / 2 m v^{2}=2 \times 18 \times 1^{2} /(2 \times 1.5)-m g(2)$ Speed at M is $4.24 \mathrm{~ms}^{-1}$	A1 B1 M1 A1 [5] M1 A1ft A1ft [3]	For using $\mathrm{EE}=\lambda x^{2} / 2 L$ May be scored with correct EE terms in expressions for total energy on release and total energy at lowest point May be scored with correct GPE terms in expressions for total energy on release and total energy at lowest point For using the p.c.energy AG For using the p.c.energy KE, PE \& EE must all be represented ft only when just one string is considered throughout in evaluating EE ft only for answer 4.10 following consideration of only one string

¢ 6	$\begin{aligned} & {\left[-m g \sin \theta=m L\left(\mathrm{~d}^{2} \theta / \mathrm{d} t^{2}\right)\right]} \\ & \mathrm{d}^{2} \theta / \mathrm{d} t^{2}=-(g / L) \sin \theta \end{aligned}$	M1 A1 [2]	For using Newton's second law tangentially with $a=L d^{2} \theta / \mathrm{d} t^{2}$ AG
ii	$\begin{aligned} & {\left[\mathrm{d}^{2} \theta / \mathrm{d} t^{2}=-(g / L) \theta\right]} \\ & \mathrm{d}^{2} \theta / \mathrm{d} t^{2}=-(g / L) \theta \rightarrow \text { motion is } \mathrm{SH} \end{aligned}$	M1 A1 [2]	$\begin{aligned} & \text { For using } \sin \theta \approx \theta \text { because } \theta \text { is small } \\ & \text { AG } \\ & \qquad\left(\theta_{\max }=0.05\right) \end{aligned}$
iii	$\begin{aligned} & {[4 \pi / 7=2 \pi / \sqrt{9.8 / L}]} \\ & L=0.8 \end{aligned}$	M1 A1 [2]	For using $T=2 \pi / n$ where $-n^{2}$ is coefficient of θ
iv	$\begin{aligned} {[\theta} & =0.05 \cos 3.5 \times 0.7] \\ \theta & =-0.0385 \end{aligned}$ $t=1.10$ (accept 1.1 or 1.09)	M1 Alft M1 A1ft [4]	For using $\theta=\theta_{0} \cos n t\left\{\theta=\theta_{0} \sin n t\right.$ not accepted unless the t is reconciled with the t as defined in the question $\}$ ft incorrect $L\left\{\theta=0.05 \cos \left[4.9 /(5 L)^{1 / 2}\right]\right\}$ For attempting to find 3.5t $(\pi<3.5 t<$ 1.5π) for which $0.05 \cos 3.5 t=$ answer found for θ or for using $3.5\left(t_{1}+t_{2}\right)=2 \pi$ ft incorrect $L\left\{t=\left[2 \pi(5 L)^{1 / 2}\right] / 7-0.7\right\}$
v	Speed is $0.0893 \mathrm{~ms}^{-1}$ (Accept answers correct to 2 s.f.)	A1ft A1ft [3]	For using $\theta^{2}=n^{2}\left(\theta_{0}^{2}-\theta^{2}\right)$ $\theta=-n \theta_{o} \sin n t$ \{also allow $\theta=$ $n \theta_{\mathrm{o}} \cos n t$ if $\theta=\theta_{\mathrm{o}} \sin n t$ has been used previously\} ft incorrect θ with or without 3.5 represented by $(g / L)^{1 / 2}$ using incorrect L in (iii) or for $\theta=3.5 \times 0.05 \cos (3.5 \times 0.7)$ following previous use of $\theta=\theta_{0} \sin n t$ ft incorrect $L(L \times 0.089287 / 0.8$ with $n=3.5$ used or from $\left\|0.35 \sin \left\{4.9 /[5 L]^{1 / 2}\right\} /[5 L]^{1 / 2}\right\|$
			SR for candidates who use θ as v. (Max 1/3) For $\mathrm{v}= \pm 0.112$

7 i	$\begin{aligned} & \text { Gain in PE }=m g a(1-\cos \theta) \\ & {\left[1 / 2 m u^{2}-1 / 2 m v^{2}=m g a(1-\cos \theta)\right]} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \end{aligned}$	For using KE loss = PE gain
	$\begin{aligned} & v^{2}=u^{2}-2 g a(1-\cos \theta) \\ & {[R-m g \cos \theta=m(\operatorname{accel} .)]} \\ & R=m v^{2} / a+m g \cos \theta \\ & {\left[R=m\left\{u^{2}-2 g a(1-\cos \theta)\right\} / a+m g \cos \theta\right]} \\ & R=m u^{2} / a+m g(3 \cos \theta-2) \end{aligned}$	A1 M1 A1 M1 A1 [7]	For using Newton's second law radially For substituting for v^{2} AG
ii	$\begin{aligned} & {\left[0=m u^{2} / a-5 m g\right]} \\ & u^{2}=5 a g \end{aligned}$ $\left[v^{2}=5 a g-4 a g\right]$ Least value of v^{2} is $a g$	M1 A1 M1 A1 [4]	For substituting $R=0$ and $\theta=180^{\circ}$ For substituting for $u^{2}(=5 a g)$ and $\theta=$ 180° in v^{2} (expression found in (i)) \{ but M0 if $v=0$ has been used to find $\left.u^{2}\right\}$ AG
iii	$\begin{aligned} & {\left[0=u^{2}-2 \mathrm{~g} a(1-\sqrt{3} / 2)\right]} \\ & u^{2}=\operatorname{ag}(2-\sqrt{3}) \end{aligned}$	M1 A1 [2]	For substituting $v^{2}=0$ and $\theta=\pi / 6$ in v^{2} (expression found in (i)) Accept $u^{2}=2 \operatorname{ag}(1-\cos \pi / 6)$

4731 Mechanics 4

1 (i)	Using $\begin{aligned} \omega_{2}{ }^{2}=\omega_{1}{ }^{2}+2 \alpha \theta, 67^{2} & =83^{2}+2 \alpha \times 1000 \\ \alpha & =-1.2\end{aligned}$ Angular deceleration is $1.2 \mathrm{rads}^{-2}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$ [2]	
(ii)	Using $\theta=\omega_{1} t+\frac{1}{2} \alpha t^{2}$, $\begin{gathered} 400=83 t-0.6 t^{2} \\ t=5 \text { or } 133 \frac{1}{3} \end{gathered}$ Time taken is 5 s	$\begin{aligned} & \mathrm{M} 1 \\ & \\ & \text { A1ft } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	Solving to obtain a value of t
	$\begin{array}{lr} \text { Alternative for (ii) } & \\ \omega_{2}{ }^{2}=83^{2}-2 \times 1.2 \times 400 & \text { M1A1 } \mathrm{ft} \\ \omega_{2}=77 & \\ 77=83-1.2 t & \text { M1 } \\ t=5 & \text { A1 } \end{array}$		(M0 if $\omega=67$ is used in (ii))

2	$\begin{aligned} & \text { Volume } V=\int \pi y^{2} \mathrm{~d} x=\int_{a}^{2 a} \pi \frac{a^{6}}{x^{4}} \mathrm{~d} x \\ & \quad=\pi\left[-\frac{a^{6}}{3 x^{3}}\right]_{a}^{2 a}=\frac{7}{24} \pi a^{3} \\ & \begin{aligned} V & \bar{x} \end{aligned}=\int \pi x y^{2} \mathrm{~d} x \\ & \\ & =\int_{a}^{2 a} \pi \frac{a^{6}}{x^{3}} \mathrm{~d} x \\ & \\ & =\pi\left[-\frac{a^{6}}{2 x^{2}}\right]_{a}^{2 a}=\frac{3}{8} \pi a^{4} \\ & \begin{array}{l} \bar{x} \end{array}=\frac{\frac{3}{8} \pi a^{4}}{\frac{7}{24} \pi a^{3}} \\ & \\ & =\frac{9 a}{7} \end{aligned}$	M1 A1 M1 A1 A1 M1 A1 [7]	π may be omitted throughout For integrating x^{-4} to obtain $-\frac{1}{3} x^{-3}$ for $\int x y^{2} \mathrm{~d} x$ Correct integral form (including limits) For integrating x^{-3} to obtain $-\frac{1}{2} x^{-2}$ Dependent on previous M1M1

3 (i)	$\begin{aligned} I= & \frac{1}{2}(4 m)(2 a)^{2}+(4 m) a^{2} \\ & +m(3 a)^{2} \\ = & 21 m a^{2} \end{aligned}$	$\begin{gathered} \mathrm{M} 1 \\ \mathrm{~A} 1 \\ \mathrm{~B} 1 \\ \mathrm{~A} 1 \\ {[4]} \end{gathered}$	Applying parallel axes rule
(ii)	From $\mathrm{P}, \quad \bar{x}=\frac{(4 m) a+m(3 a)}{5 m} \quad\left(=\frac{7 a}{5}\right)$ $\begin{aligned} & \text { Period is } 2 \pi \sqrt{\frac{21 m a^{2}}{5 m g\left(\frac{7}{5} a\right)}} \\ &=2 \pi \sqrt{\frac{3 a}{g}} \end{aligned}$	M1 M1 A1 ft A1 [4]	Correct formula $2 \pi \sqrt{\frac{I}{m g h}}$ seen or using $L=I \theta$ and period $2 \pi / \omega$
	Alternative for (ii) $-4 m g a \sin \theta-m g(3 a) \sin \theta=\left(21 m a^{2}\right) \theta \quad$ M1 Period is $2 \pi \sqrt{\frac{21 m a^{2}}{7 m g a}}=2 \pi \sqrt{\frac{3 a}{g}}$ A1 ft A1		Using $L=I \theta$ with three terms Using period $2 \pi / \omega$

4 (i)	$\begin{aligned} \frac{\sin \theta}{62} & =\frac{\sin 40}{48} \\ \theta & =56.1^{\circ} \text { or } 123.9^{9} \end{aligned}$ Bearings are 018.9° and 311.1°	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1A } \\ & 1 \\ & 1 \\ & \hline[5] \end{aligned}$	Velocity triangle One value sufficient Accept 19° and 311°
(ii)	Shorter time when $\theta=56.1^{\circ}$ $\frac{v}{\sin 83.87}=\frac{48}{\sin 40}$ Relative speed is $v=74.25$ Time to intercept is $\frac{3750}{74.25}$ $=50.5 \mathrm{~s}$	$\begin{aligned} & \text { B1 ft } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	Or $v^{2}=62^{2}+48^{2}-2 \times 62 \times 48 \cos 83.87$ Dependent on previous M1
			component eqns (displacement or velocity) obtaining eqn in ϕ or t or $v(=3750 / t)$ correct simplified equation or $t^{2}-231.3 t+9131.5=0 \quad[t=50.5,180.8]$ or $v^{2}-94.99 v+1540=0[v=74.25,20.74]$ solving to obtain a value of ϕ solving to obtain a value of t (max A1 if any extra values given) appropriate selection for shorter time

5 (i)	Area is $\int_{0}^{2}\left(8-x^{3}\right) \mathrm{d} x=\left[8 x-\frac{1}{4} x^{4}\right]_{0}^{2}=12$ Mass per m^{2} is $\rho=\frac{63}{12}=5.25$ $\begin{aligned} I_{y} & =\sum(\rho y \delta x) x^{2}=\rho \int x^{2} y \mathrm{~d} x \\ & =\rho \int_{0}^{2}\left(8 x^{2}-x^{5}\right) \mathrm{d} x \\ & =\rho\left[\frac{8}{3} x^{3}-\frac{1}{6} x^{6}\right]_{0}^{2}=\frac{32}{3} \rho \\ & =\frac{32}{3} \times \frac{63}{12}=56 \mathrm{~kg} \mathrm{~m}^{2} \end{aligned}$	B1 M1 M1 A1 A1 A1 AG [6]	for $\int x^{2} y \mathrm{~d} x$ or $\int x^{3} \mathrm{~d} y$ or $\frac{1}{3} \rho \int_{0}^{8}(8-y) \mathrm{d} y$ for $\frac{32}{3}$
(ii)	$\begin{aligned} & \hline \text { Anticlockwise moment is } 800-63 \times 9.8 \times \frac{4}{5} \\ &=306.08 \mathrm{Nm}>0 \end{aligned}$	M1 A1 [2]	Full explanation is required; (anti)clockwise should be mentioned before the conclusion
(iii)	$I=I_{x}+I_{y}=1036.8+56 \quad(=1092.8)$ WD by couple is $800 \times \frac{1}{2} \pi$ Change in PE is $63 \times 9.8 \times\left(\frac{24}{7}-\frac{4}{5}\right)$ $\begin{aligned} 800 \times \frac{1}{2} \pi & =\frac{1}{2} I \omega^{2}-63 \times 9.8 \times\left(\frac{24}{7}-\frac{4}{5}\right) \\ 1256.04 & =546.4 \omega^{2}-1622.88 \\ \omega & =2.30 \mathrm{rads}^{-1} \end{aligned}$	B1 B1 B1 M1 A1 A1 [6]	Equation involving WD, KE and PE May have an incorrect value for I; other terms and signs are cao

6 (i)	GPE is $m g(a \sin 2 \theta)$ $\begin{gathered} \mathrm{AB}=2 a \cos \theta \text { or } \mathrm{AB}^{2}=a^{2}+a^{2}-2 a^{2} \cos (\pi-2 \theta) \\ \mathrm{EPE} \text { is } \frac{\sqrt{3} m g}{2 a}(2 a \cos \theta)^{2} \\ \quad=\sqrt{3} m g a(1+\cos 2 \theta) \end{gathered}$ Total PE is $V=\sqrt{3} m g a(1+\cos 2 \theta)+m g a \sin 2 \theta$ $=m g a(\sqrt{3}+\sqrt{3} \cos 2 \theta+\sin 2 \theta)$	B1 B1 M1 A1 AG [4]	Or $m g(2 a \cos \theta \sin \theta)$ Any correct form Expressing EPE and GPE in terms of $\cos 2 \theta$ and $\sin 2 \theta$
(ii)	$\begin{aligned} \frac{\mathrm{d} V}{\mathrm{~d} \theta} & =m g a(-2 \sqrt{3} \sin 2 \theta+2 \cos 2 \theta) \\ =0 \text { when } 2 \sqrt{3} \sin 2 \theta & =2 \cos 2 \theta \\ \tan 2 \theta & =\frac{1}{\sqrt{3}} \\ \theta & =\frac{\pi}{12},-\frac{5 \pi}{12} \end{aligned}$	B1 M1 M1 A1A1 [5]	(B 0 for $\frac{\mathrm{d} V}{\mathrm{~d} \theta}=-2 \sqrt{3} \sin 2 \theta+2 \cos 2 \theta$) Solving to obtain a value of θ Accept $0.262,-1.31$ or $15^{\circ},-75^{\circ}$
(iii)	$\frac{\mathrm{d}^{2} V}{\mathrm{~d} \theta^{2}}=m g a(-4 \sqrt{3} \cos 2 \theta-4 \sin 2 \theta)$ When $\theta=\frac{\pi}{12}, \frac{\mathrm{~d}^{2} V}{\mathrm{~d} \theta^{2}}=-8 m g a<0$ so this position is unstable When $\theta=-\frac{5 \pi}{12}, \frac{\mathrm{~d}^{2} V}{\mathrm{~d} \theta^{2}}=8 m g a>0$ so this position is stable	B1ft M1 A1 A1 [4]	Determining the sign of $V^{\prime \prime}$ or M2 for alternative method for max / min

7 (i)	$\begin{aligned} \text { Initially } \cos \theta & =\frac{0.6}{1.5}=0.4 \\ \frac{1}{2} \times 4.9 \omega^{2} & =6 \times 9.8(0.5 \times 0.4-0.5 \cos \theta) \\ \omega^{2} & =12(0.4-\cos \theta) \\ \omega^{2} & =4.8-12 \cos \theta \end{aligned}$	M1 A1 A1 AG [3]	Equation involving KE and PE
(ii)	$\begin{aligned} 6 \times 9.8 \times 0.5 \sin \theta & =4.9 \alpha \\ \alpha & =6 \sin \theta \quad\left(\mathrm{rads}^{-2}\right) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ $[2]$	$\text { or } 2 \omega \frac{\mathrm{~d} \omega}{\mathrm{~d} \theta}=12 \sin \theta \text { or } 2 \omega \frac{\mathrm{~d} \omega}{\mathrm{~d} t}=12 \sin \theta \frac{\mathrm{~d} \theta}{\mathrm{~d} t}$
(iii)	$\begin{aligned} 6 \times 9.8 \cos \theta-F & =6 \times 0.5 \omega^{2} \\ 58.8 \cos \theta-F & =14.4-36 \cos \theta \\ F & =94.8 \cos \theta-14.4 \\ 6 \times 9.8 \sin \theta-R & =6 \times 0.5 \alpha \\ 58.8 \sin \theta-R & =18 \sin \theta \\ R & =40.8 \sin \theta \end{aligned}$	M1 M1 A1 AG M1 M1 A1 [6]	for radial acceleration $r \omega^{2}$ radial equation of motion Dependent on previous M1 for transverse acceleration $r \alpha$ transverse equation of motion Dependent on previous M1
(iv)	If B reaches the ground, $\cos \theta=-0.4$ $F=-52.32$ $\sin \theta=\sqrt{0.84}\left[\theta=1.982\right.$ or $\left.113.6^{\circ}\right] R=37.39$ Since $\frac{52.32}{37.39}=1.40>0.9$, this is not possible	M1 A1 M1 A1 [4]	Allow M1A0 if $\cos \theta=+0.4$ is used Obtaining a value for R Or $\mu R=33.65$, and $52.32>33.65$
	Alternative for (iv) Slips when $F=-0.9 R$ $\begin{aligned} 94.8 \cos \theta-14.4 & =-36.72 \sin \theta \\ \theta & =1.798 \quad\left[103.0^{\circ}\right] \end{aligned}$ $\theta=1.982\left[113.6^{\circ}\right]$ so it slips before this A1		Allow M1A0 if $F=+0.9 R$ is used Allow M1A0 if $\cos \theta=+0.4$ is used

4732 Probability \& Statistics 1

1			Q1: if consistent " 0.8 " incorrect or $1 / 8,7 / 8$ or 0.02 allow M marks in ii, iii \& $1^{\text {st }} \mathrm{M} 1$ in i
i	Binomial stated $\begin{aligned} & \begin{array}{l} 0.9437-0.7969 \\ =0.147(3 \mathrm{sfs}) \end{array} \text { or }{ }^{8} \mathrm{C}_{3} \times 0.2^{3} \times 0.8^{5} \\ & =0 . \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } 3 \end{aligned}$	or implied by use of tables or ${ }^{8} \mathrm{C}_{3}$ or $0.2^{a} \times 0.8^{b} \quad(a+b=8)$
ii	$\begin{aligned} & 1-0.7969 \\ & =0.203(3 \mathrm{sf}) \end{aligned}$	M1 A1 2	allow $1-0.9437$ or 0.056 (3) or equiv using formula
iii	$\begin{aligned} & 8 \times 0.2 \text { oe } \\ & 1.6 \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \text { A1 } 2 \end{aligned}$	$\begin{aligned} & 8 \times 0.2=2 \mathrm{M} 1 \mathrm{A0} 0 \\ & 1.6 \div 8 \text { or }{ }^{1} /{ }_{1.6} \mathrm{M} 0 \mathrm{~A} 0 \end{aligned}$
Total		7	
2	$\begin{aligned} & \text { first two } d \text { 's }= \pm 1 \\ & \Sigma d^{2} \text { attempted } \\ & 1-\frac{6 \times{ }^{\prime}{ }^{\prime} "}{7\left(7^{2}-1\right)} \\ & ={ }^{27} / 28 \text { or } 0.964(3 \mathrm{sfs}) \end{aligned}$	B1 M1 M1dep A1	$\begin{array}{ll} S_{x x} \text { or } S_{y y}=28 & \text { B1 } \\ S_{x y}=27 & \text { B1 } \\ S_{x y} / \sqrt{ }\left(S_{x x} S_{y y}\right) & \text { M1 dep B1 } \\ 1234567 \& 1276543\left(\text { ans }^{2} / 7\right): ~ M R, ~ l o s e ~ A 1 ~ \end{array}$
Total		4	
3 i	x independent or controlled or changed Value of y was measured for each x x not dependent	B1 1	Allow Water affects yield, or yield is dependent or yield not control water supply Not just y is dependent Not x goes up in equal intervals Not x is fixed
ii	(line given by) minimum sum of squs	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 12 \end{aligned}$	B1 for "minimum" or "least squares" with inadequate or no explanation
iii	$\begin{array}{ll} S_{x x}=17.5 & \text { or } 2.92 \\ S_{y y}=41.3 & \text { or } 6.89 \\ S_{x y}=25 & \text { or } 4.17 \\ r=\frac{S_{x y}}{\sqrt{\left(S_{x x} S_{y y}\right)}} & \\ =0.930(3 \mathrm{sf}) & \end{array}$	B1 M1 A1 3	or $91-21^{2} / 6$ or $394-46^{2} / 6$ B1 for any one or $186-{ }^{21 \times 46 / 6}$ dep B1 0.929 or 0.93 with or without wking B1M1A0 SC incorrect $n:$ max B1M1A0
iv	Near 1 or lg, high, strong, good corr'n or relnship oe Close to st line or line good fit	$\begin{aligned} & \mathrm{B} 1 \mathrm{ft} \\ & \text { B1 } 2 \end{aligned}$	$\|r\|$ small: allow little (or no) corr'n oe Not line accurate. Not fits trend
Total		8	

4			Q4: if consistent " 0.7 " incorrect or $1 / 3,2 / 3$ or 0.03 allow M marks in ii, iii \& $1^{\text {st }} \mathrm{M} 1$ in i
i	Geo stated $0.7^{3} \times 0.3$ alone 1029/10000 or $0.103(3 \mathrm{sf})$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } 3 \end{aligned}$	$\begin{aligned} & \text { or implied by } q^{n} \times p \text { alone }(n>1) \\ & 0.7^{3}-0.7^{4} \end{aligned}$
ii	$\begin{aligned} & 0.7^{4} \text { alone } \\ & ={ }^{2401} / 10000 \text { or } 0.240(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$	$\begin{aligned} & 1-\left(0.3+0.7 \times 0.3+0.7^{2} \times 0.3+0.7^{3} \times 0.3\right) \\ & \text { NB } 1-0.7^{4}: \text { M0 } \end{aligned}$
iii	$1-0.7^{5}$ $=0.832(3 \mathrm{sfs})$	M2 A1 3	or $0.3+0.7 \times 0.3++\ldots .+0.7 \times 0.3 \mathrm{M} 2$ M1 for one term extra or omitted or wrong or for 1-(above) M1 for $1-0.7^{6}$ or 0.7^{5} NB Beware: $1-0.7^{6}=0.882$
		8	
5 i	$\begin{aligned} & 25 / 10 \\ & =2.5 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$	Allow ${ }^{25} /(9+10)$ or 2.78: M1
ii	$\begin{aligned} & (19.5,25) \\ & (9.5,0) \end{aligned}$	$\begin{array}{ll} & \\ \text { B1 } & \\ \hline \end{array}$	Allow $(24.5,47)$ Both reversed: SC B1 If three given, ignore $(24.5,47)$
iii	Don't know exact or specific values of x (or min or max or quartiles or median or whiskers). Can only estimate (min or max or quartiles or median or whiskers) oe Can't work out (.....) Data is grouped oe	B1 1	Exact data not known Allow because data is rounded
Total		5	

6 i	$\begin{aligned} & \sum x \div 11 \\ & 70 \\ & \sum x^{2} \text { attempted } \\ & \sqrt{\frac{\sum x^{2}}{11}-\bar{x}^{2}}=\sqrt{ }\left({ }^{54210} / 11-70^{2}\right) \text { or } \sqrt{ } 28.18 \text { or } \\ & 5.309 \\ & (=5.31) \text { AG } \end{aligned}$	M1 A1 M1 A1	≥ 5 terms, or $\sum(x-\bar{x})^{2}$ or $\sqrt{\frac{\sum(x-\bar{x})^{2}}{11}}=\sqrt{ }{ }^{310} / 11$ or $\sqrt{ } 28.18$ ie correct substn or result If $\times{ }^{11} / 10$: M1A1M1A0
ii	Attempt arrange in order med $=67$ 74 and 66 $\mathrm{IQR}=8$	M1 A1 M1 A1 4	or (72.5-76.5) - (65.5-66.5) incl must be from $74-66$
			iii, iv \& v: ignore extras
iii	no (or fewer) extremes this year oe sd takes account of all values sd affected by extremes less spread tho' middle 50% same less spread tho $3^{\text {rd }} \& 9^{\text {th }}$ same or same gap	B1 1	fewer high \&/or low scores highest score(s) less than last year Not less spread or more consistent Not range less
iv	sd measures spread or variation or consistency oe	B1 1	sd less means spread is less oe or marks are closer together oe
v	more consistent, more similar, closer together, nearer to mean less spread	B1 1	allow less variance Not range less Not highest \& lowest closer
Total		11	
7 i	$\begin{aligned} & { }^{8} \mathrm{C}_{3} \\ & =56 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$	
ii	${ }^{7} \mathrm{C}_{2}$ or or ${ }^{7} \mathrm{P}_{2} /{ }^{8} \mathrm{P}_{3}$ $1 / 8$ not from incorrect $\div\left(8{ }^{8} \mathrm{C}_{3}\right.$ or " 56 ") only $={ }^{3} / 8$ $\times 3$ only or $1 / 8+^{7} / 8 \times 1 / 7+^{7} / 8 \times 6 / 7 \times 1 /$ 6	M1 M1 A1 3	${ }^{8} \mathrm{C}_{1}+{ }^{7} \mathrm{C}_{1}+{ }^{6} \mathrm{C}_{1}$ or 21 ${ }^{7 / 8 \times 6 / 7 \times 5 / 6}$or $8 \times 7 \times 6$ or $/ / 8 \times 1 / 7 \times \%$ indep, dep ans <1 $1-$ prod 3 probs
iii	$\begin{aligned} & { }^{8} \mathrm{P}_{3} \text { or } 8 \times 7 \times 6 \text { or } \mathrm{C}_{1} \times \mathrm{C}_{1} \times{ }^{6} \mathrm{C}_{1} \text { or } 336 \\ & 1 \div{ }^{8} \mathrm{P}_{3} \text { only } \\ & =1 / 336 \text { or } 0.00298(3 \mathrm{sf}) \\ & =1 \end{aligned}$	M1 M1 $\text { A1 } 3$	$\begin{array}{r} 1 / 8 \times 1 / 7 \times 1 / 6 \text { only M2 } \begin{array}{r} \text { If } \times \text { or } \\ (1 / 8)^{3} \end{array} \quad \text { M1 } 1 \end{array}$
Total		8	

8ia	$18 / 19$ or ${ }^{1 / 19}$ seen ${ }^{17} / 18$ or ${ }^{1 /}{ }_{18}$ seen structure correct ie 6 branches all correct incl. probs and W \& R	B1 B1 B1 B1 4	regardless of probs \& labels (or 14 branches with correct 0s \& 1s)
b	$\begin{aligned} & 1 / 20+19 / 20 \times 1 / 19+19 / 20 \times 18 / 19 \times 1 / 18 \\ & =3 / 20 \end{aligned}$	$\begin{aligned} & \text { M2 } \\ & \text { A1 } 3 \end{aligned}$	M1 any 2 correct terms added $\quad\left[\begin{array}{l}19 / 20 \times 18 / 19 \times 1{ }^{17} / 18 \\ 1-{ }^{19} / 20 \times{ }^{18} / 19 \times{ }^{17 /} / 18\end{array}\right.$
iia	$\begin{aligned} & 19 / 20 \times 18 / 19 \\ & =9 / 10 \mathrm{oe} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$	
b	$\begin{aligned} & \left(\begin{array}{l} \mathrm{P}(X=1)= \\ 19 / 20 \times 1 / 19 \\ =1 / 20 \\ =1 / 20 \end{array}\right. \\ & \sum_{=5 p} \quad \text { or } 2.85 \end{aligned}$	M1 A1 M1 A1 4	or $1-(1 / 20+9 / 10)$ or 2 probs of $1 / 20$ M1A1 ≥ 2 terms, ft their p 's if $\Sigma p=1$ NB: ${ }^{19} / 20 \times 3=2.85$ no mks
			With replacement:
ia			Original scheme.
ib			$\begin{aligned} & 1 / 20+19 \times 1 / 20+(19)^{10} \times 1 / 20 \\ & \text { or } \left.1-(19)_{20}\right)^{2} \end{aligned}$
iia			
b			Original scheme But NB ans 2.85(25...) M1A0M1A0
Total		13	

9 i	$(1-0.12)^{n}$ $\underline{\log 0.05}$ $\log 0.88$ or $0.88^{23}=0.052 \ldots$ $n=24$ or $0.88^{24}=0.046 \ldots$	M1 M1 A1 3	Can be implied by $2^{\text {nd }} \mathrm{M} 1$ allow $n-1$ or $\log _{0.88} 0.05$ or $23.4(\ldots)$ Ignore incorrect inequ or equals signs
ii	${ }^{6} \mathrm{C}_{2} \times 0.88^{4} \times 0.12^{2} \quad(=0.1295 \ldots)$ $\begin{aligned} & \times 0.12 \\ & =0.0155 \end{aligned}$	M3 M1 A1 5	or $0.88^{4} \times 0.12^{2}$ or ${ }^{6} \mathrm{C}_{2} \times 0.88^{4} \times 0.12^{2}+$ extra \quad M2 or 2 successes in 6 trials implied or ${ }^{6} \mathrm{C}_{2}$dep $\geq \mathrm{M} 1$$0.88^{4} \times 0.12^{2} \times 0.12: \quad$ M1$0.88^{4} \times 0.12^{3}$ unless clear P $(2$ success in 6 trials $) \times 0.12$ in which case M2M1A0
Total		8	

Total 72 marks

4733 Probability \& Statistics 2

1	$\frac{105.0-\mu}{\sigma}=-0.7 ; \frac{110.0-\mu}{\sigma}=-0.5$ Solve: $\begin{aligned} & \sigma=25 \\ & \mu=122.5 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { M1 } & \\ \text { A1 } & \\ & \\ \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \mathbf{6} \\ \hline \end{array}$	Standardise once, equate to Φ^{-1}, allow σ^{2} Both correct including signs \& σ, no cc (continuity correction), allow wrong z Both correct z-values. " 1 -" errors: M1A0B1 Get either μ or σ by solving simultaneously σ a.r.t. 25.0 $\mu=122.5 \pm 0.3$ or 123 if clearly correct, allow from σ^{2} but not from $\sigma=-25$.
2	$\operatorname{Po}(20) \approx \mathrm{N}(20,20)$ Normal approx. valid as $\lambda>15$ $\begin{aligned} & 1-\Phi\left(\frac{24.5-20}{\sqrt{20}}\right)=1-\Phi(1.006) \\ & =1-0.8427=\mathbf{0 . 1 5 7 3} \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { A1 } & \\ \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \mathbf{6} \\ \hline \end{array}$	Normal stated or implied $(20,20)$ or $(20, \sqrt{ } 20)$ or $\left(20,20^{2}\right)$, can be implied "Valid as $\lambda>15$ ", or "valid as λ large" Standardise 25 , allow wrong or no $\mathrm{cc}, \sqrt{ } 20$ errors $1.0<z \leq 1.01$ Final answer, art 0.157
3	$\mathrm{H}_{0}: p=0.6, \mathrm{H}_{1}: p<0.6$ where p is proportion in population who believe it's good value $R \sim \mathrm{~B}(12,0.6)$ $\begin{aligned} & \alpha: \mathrm{P}(R \leq 4) \\ &=0.0573 \\ &>0.05 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { B2 } \\ \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \end{array}$	Both, B2. Allow π \% One error, B1, except x or \bar{x} or r or $R: 0$ $\mathrm{B}(12,0.6)$ stated or implied, e.g. $\mathrm{N}(7.2,2.88)$ Not $\mathrm{P}(<4)$ or $\mathrm{P}(\geq 4)$ or $\mathrm{P}(=4)$ Must be using $\mathrm{P}(\leq 4)$, or $\mathrm{P}(>4)<0.95$ and binomial
	$\begin{array}{ll} \beta: & \mathrm{CR} \text { is } \leq 3 \text { and } 4>3 \\ & p=0.0153 \end{array}$	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { A1 } \end{array}$	Must be using CR; explicit comparison needed
	Do not reject H_{0}. Insufficient evidence that the proportion who believe it's good value for money is less than 0.6	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { A1 } & 7 \end{array}$	Correct conclusion, needs $\mathrm{B}(12,0.6)$ and ≤ 4 Contextualised, some indication of uncertainty [SR: $\mathrm{N}(7.2, \ldots)$ or $\mathrm{Po}(7.2)$: poss B2 M1A0] [SR: $\mathrm{P}(<4)$ or $\mathrm{P}(=4)$ or $\mathrm{P}(\geq 4)$: B2 M1A0]
4 (i)	Eg "not all are residents"; "only those in street asked"	$\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { B1 } & 2 \end{array}$	One valid relevant reason A definitely different valid relevant reason Not "not a random sample", not "takes too long"
(ii)	Obtain list of whole population Number it sequentially Select using random numbers [Ignore method of making contact]	$\begin{array}{ll} & \\ \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & \mathbf{3} \end{array}$	"Everyone" or "all houses" must be implied Not "number it with random numbers" unless then "arrange in order of random numbers" SR: "Take a random sample": B1 SR: Systematic: B1 B0, B1 if start randomly chosen
(iii)	Two of: α : Members of population equally likely to be chosen β : Chosen independently/randomly γ : Large sample (e.g. > 30)	$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & \mathbf{2} \end{array}$	One reason. NB : If "independent", must be "chosen" independently, not "views are independent" Another reason. Allow "fixed sample size" but not both that and "large sample". Allow "houses"

5 (i)	Bricks scattered at constant average rate \& independently of one another	$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & \mathbf{2} \end{array}$	B1 for each of 2 different reasons, in context. (Treat "randomly" \equiv "singly" \equiv "independently")
(ii)	Po(12) $\begin{gathered} \mathrm{P}(\leq 14)-\mathrm{P}(\leq 7) \quad[=.7720-.0895] \\ {[\text { or } \mathrm{P}(8)+\mathrm{P}(9)+\ldots+\mathrm{P}(14)]} \\ =\mathbf{0 . 6 8 2 5} \end{gathered}$	B1 M1 A1 3	Po(12) stated or implied Allow one out at either end or both, eg 0.617 , or wrong column, but not from Po(3) nor, eg, . 9105 .7720 Answer in range [0.682, 0.683]
(iii)	$\begin{aligned} & e^{-\lambda}=0.4 \\ & \lambda=-\ln (0.4) \\ & =0.9163 \\ & \text { Volume }=0.9163 \div 3=\mathbf{0 . 3 0 5} \end{aligned}$	B1 M1 A1 M1 4	This equation, aef, can be implied by, eg 0.9 Take ln, or 0.91 by T \& I λ art 0.916 or 0.92 , can be implied Divide their λ value by 3 [SR: Tables, eg $0.9 \div 3$: B1 M0 A0 M1]
6 (i)	$\begin{aligned} & \frac{33.6}{\frac{115782.84}{100}-33.6^{2}}[=28.8684] \\ & \times \frac{100}{99} \quad=\mathbf{2 9 . 1 6} \end{aligned}$	$\begin{array}{ll} \hline \text { B1 } & \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 4 \end{array}$	33.6 clearly stated [not recoverable later] Correct formula used for biased estimate $\times \frac{100}{99}$, M's independent. Eg $\frac{\Sigma r^{2}}{99}\left[-33.6^{2}\right]$ SR B1 variance in range [29.1, 29.2]
(ii)	$\begin{aligned} & \overline{\bar{R}} \sim \mathrm{~N}(33.6,29.16 / 9) \\ & \begin{aligned} &=\mathrm{N}\left(33.6,1.8^{2}\right) \\ & 1-\Phi\left(\frac{32-33.6}{\sqrt{3.24}}\right) {[=\Phi(0.8889)] } \\ &=\mathbf{0 . 8 1 3 0} \end{aligned} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Normal, their μ, stated or implied Variance [their (i)] $\div 9 \quad[$ not $\div 100]$ Standardise \& use $\Phi, 9$ used, answer >0.5, allow $\sqrt{ }$ errors, allow cc 0.05 but not 0.5 Answer, art 0.813
(iii)	No, distribution of R is normal so that of \bar{R} is normal	B2 2	Must be saying this. Eg "9 is not large enough": B0. Both: B1 max, unless saying that n is irrelevant.
7 (i)	$\begin{aligned} & \frac{2}{9} \int_{0}^{3} x^{3}(3-x) d x=\frac{2}{9}\left[\frac{3 x^{4}}{4} \frac{x^{5}}{5}\right]_{0}^{3}[=2.7]- \\ & (11 / 2)^{2} \quad=\frac{9}{20} \text { or } \mathbf{0 . 4 5} \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & \\ \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \mathbf{5} \end{array}$	Integrate $x^{2} \mathrm{f}(x)$ from 0 to 3 [not for μ] Correct indefinite integral Mean is $11 / 2$, soi [not recoverable later] Subtract their μ^{2} Answer art 0.450
(ii)	$\begin{aligned} \frac{2}{9} \int_{0}^{0.5} x(3-x) d x & =\frac{2}{9}\left[\frac{3 x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{0.5} \\ & =\frac{2}{27} \mathrm{AG} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Integrate $\mathrm{f}(x)$ between $0,0.5$, must be seen somewhere Correctly obtain given answer $\frac{2}{27}$, decimals other than 0.5 not allowed, 1 more line needed (eg [] = $1 / 3$)
(iii)	$\begin{aligned} & \mathrm{B}\left(108, \frac{2}{27}\right) \\ & \approx \mathrm{N}(8,7.4074) \\ & 1-\Phi\left(\frac{9.5-8}{\sqrt{7.4074}}\right) \\ & =1-\Phi(0.5511) \\ & =\mathbf{0 . 2 9 1} \end{aligned}$	B1 M1 A1 M1 A1 A1 6	$\mathrm{B}\left(108, \frac{2}{27}\right)$ seen or implied, eg $\operatorname{Po}(8)$ Normal, mean 8 variance (or SD) 200/27 or art 7.41 Standardise 10 , allow $\sqrt{ }$ errors, wrong or no cc, needs to be using $\mathrm{B}(108, \ldots)$ Correct $\sqrt{ }$ and cc Final answer, art 0.291

(iv)	$\bar{X} \sim N\left(1.5, \frac{1}{240}\right)$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \sqrt{ } \\ & \mathrm{~B} 1 \sqrt{ } \mathbf{3} \end{aligned}$	Normal \quad NB: not part (iii) Mean their μ Variance or SD (their 0.45$) / 108$ [not (8, 50/729)]
8 (i)	$\begin{aligned} & \mathrm{H}_{0}: \mu=78.0 \\ & \mathrm{H}_{1}: \mu \neq 78.0 \\ & z=\frac{76.4-78.0}{\sqrt{68.9 / 120}}=-2.1115 \\ & >-2.576 \text { or } 0.0173>0.005 \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	Both correct, B2. One error, B1, but x or \bar{x} : B0. Needs $\pm(76.4-78) / \sqrt{ }(\sigma \div 120)$, allow $\sqrt{ }$ errors art -2.11 , or $p=0.0173 \pm 0.0002$ Compare z with (-)2.576, or p with 0.005
	$\begin{aligned} & 78 \pm z \sqrt{ }(68.9 / 120) \\ &=76.048 \\ & 76.4>76.048 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \sqrt{ } \\ & \text { B1 } \end{aligned}$	Needs 78 and 120, can be - only Correct CV to 3 sf , $\sqrt{ }$ on z $z=2.576$ and compare 76.4, allow from $78 \leftrightarrow$ 76.4
	Do not reject H_{0}. Insufficient evidence that the mean time has changed	M1 $\mathrm{A} 1 \sqrt{ } 7$	Correct comparison \& conclusion, needs 120, "like with like", correct tail, \bar{x} and μ right way round Contextualised, some indication of uncertainty
(ii)	$\begin{aligned} & \frac{1}{\sqrt{68.9 / n}}>2.576 \\ & V_{n}>21.38 \\ & n_{\min }=\mathbf{4 5 8} \end{aligned}$ Variance is estimated	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	IGNORE INEQUALITIES THROUGHOUT Standardise 1 with n and 2.576, allow $\sqrt{ }$ errors, cc etc but not 2.326 Correct method to solve for $\sqrt{ }$ n (not from n) 458 only (not 457), or 373 from 2.326, signs correct Equivalent statement, allow "should use t ". In principle nothing superfluous, but "variance stays same" B1 bod

Specimen Answers

Question 4: Part (i)

α	Takes too long/too slow	B0
β	Interviewing people in the street isn't a random sample	B0
γ	Many tourists so not representative	B1
δ	Those who don't shop won't have their views considered	B1
ε	Interviewers biased as to who they ask	B1
ζ	Views influenced by views of others	B1
Part (ii)	Choose a random sample of the town and ask their opinion	B1
α	Choose names at random from the town's phone book	B1
β	A random number machine determines which house numbers should be used, and	B0B0B1
γ	every street should have the same proportion of residents interviewed	B1B0B0
δ	Visit everyone door to door and give them a questionnaire	B1B0B0
ε	Assign everyone a number and select randomly	B1B0B1
ζ	Assign everyone a number and select using random numbers	B1B1B1
η	Ditto + "ignoring numbers that don't correspond to a resident"	B1B1B0
θ	Assign each eligible person a number and pick numbers from a hat	B1B1B0

[NB: postal survey is biased]

Part (iii)

$\alpha \quad$ One person's view should not affect another's B0
$\beta \quad$ It is without bias \quad B0
$\gamma \quad$ Results occur randomly B0
$\delta \quad$ Should be asked if they are for or against (binomial testing) B0
$\varepsilon \quad$ It will survey a diverse group from different areas so should be representative B0
$\zeta \quad$ Everyone's should be chose independently of everyone else B1
$\eta \quad$ The sample size must be large \quad B1
$\theta \quad$ Participants are chosen at random and independently from one another B1 only
[though $\eta \& \theta$ together would get B 2]

Question 5 (i)

$\alpha \quad$ Number of bricks must always be the same \quad B0
$\begin{array}{ll}\beta \quad \text { Results occur randomly } & \text { B0 }\end{array}$
$\gamma \quad$ The chance of a brick being in one place is always the same B0
$\delta \quad$ Events must occur independently and at constant average rate B0
$\varepsilon \quad$ They must occur independently and at constant average rate \quad B1 only
$\zeta \quad$ Bricks' locations must be random and independent [effectively the same] B1 only
$\eta \quad$ Only one brick in any one place; bricks independent \quad [effectively the same] B1 only

4734 Probability \& Statistics 3

Penalise 2 sf instead of 3 once only. Penalise final answer $\geq 6 \mathrm{sf}$ once only.

1 (i)	$\begin{aligned} & \int_{0}^{1} \frac{2}{5} x^{2} \mathrm{~d} x+\int_{1}^{4} \frac{2}{5} \sqrt{x} \mathrm{~d} x \\ & =\left[\frac{2 x^{3}}{15}\right]_{0}^{1}+\left[\frac{4 x^{3 / 2}}{15}\right]_{1}^{4}=2 \end{aligned}$	M1 A1 A1 3	Attempt to integrate $x \mathrm{f}(x)$, both parts added, limits Correct indefinite integrals Correct answer
(ii)	$\int_{2}^{4} \frac{2}{5 \sqrt{x}} \mathrm{dx}=\left[\frac{4 \sqrt{x}}{5}\right]_{2}^{4}=\frac{4}{5}(2-\sqrt{2})$ or 0.4686	$\begin{array}{ll} \text { M1 } \\ & \\ \text { A1 } & \\ \text { A1 } & \mathbf{3} \end{array}$	Attempt correct integral, limits; needs "1-" if $\mu<1$ Correct indefinite integral, $\sqrt{ }$ on their μ Exact aef, or in range $[0.468,0.469]$
2 (i)	$\begin{aligned} & \mathrm{Po}(0.5), \operatorname{Po}(0.75) \\ & \operatorname{Po}(0.7) \text { and } \operatorname{Po}(0.9) \\ & A+B \sim \operatorname{Po}(1.6) \\ & \mathrm{P}(A+B \geq 5)=0.0237 \\ & \mathrm{~B}(20,0.0237) \\ & 0.9763^{20}+20 \times 0.9763^{19} \times 0.0237 \\ & \quad=\mathbf{0 . 9 1 9 5} \end{aligned}$	M1 A1 M1 A1 M1 A1 $\sqrt{ }$ A1 7	$0.5,0.75$ scaled These Sum of Poissons used, can have wrong parameters 0.0237 from tables or calculator Binomial (20, their p), soi Correct expression, their p Answer in range $[0.919,0.92]$
(ii)	Bacteria should be independent in drugs; or sample should be random	B1 1	Any valid relevant comment, must be contextualised
3 (i)	$\begin{aligned} & \text { Sample mean }=6.486 \\ & s^{2}=0.00073 \\ & 6.486 \pm 2.776 \times \sqrt{\frac{0.00073}{5}} \\ & \\ & (\mathbf{6 . 4 5 , 6} \mathbf{6 . 5 2}) \end{aligned}$	B1 B1 M1 B1 A1A1 6	$\begin{aligned} & 0.000584 \text { if divided by } 5 \\ & \text { Calculate sample mean } \pm t s / \sqrt{ } 5 \text {, allow } 1.96, s^{2} \\ & \text { etc } \\ & t=2.776 \text { seen } \\ & \text { Each answer, cwo } \quad(6.45246,6.5195) \end{aligned}$
(ii)	$2 \pi \times$ above $\quad[=(40.5,41.0)]$	M1 $\mathbf{1}$	
4 (i)	$\mathrm{H}_{0}: p_{1}=p_{2} ; \mathrm{H}_{1}: p_{1} \neq p_{2}$, where p_{i} is the proportion of all solvers of puzzle i Common proportion 39/80 $s^{2}=0.4875 \times 0.5125 / 20$ $(\pm) \frac{0.6-0.375}{0.1117}=(\pm) 2.013$ $2.013>1.96 \text {, or } 0.022<0.025$ Reject H_{0}. Significant evidence that there is a difference in standard of difficulty	B1 M1A1 B1 M1 A1 $\sqrt{ }$ M1 A1 $\sqrt{ }$ 8	Both hypotheses correctly stated, allow eg \hat{p} $\begin{aligned} & {[=0.4875]} \\ & {[=0.01249, \sigma=0.11176]} \\ & (0.6-0.375) / s \end{aligned}$ Allow $2.066 \sqrt{ }$ from unpooled variance, $p=$ 0.0195 Correct method and comparison with 1.96 or 0.025 , allow unpooled, 1.645 from 1-tailed only Conclusion, contextualised, not too assertive
(ii)	One-tail test used Smallest significance level 2.2(1)\%	$\begin{array}{ll} \mathrm{M} 1 & \\ \text { A1 } & \mathbf{2} \end{array}$	One-tailed test stated or implied by $\Phi(" 2.013$ "), OK if off-scale; allow 0.022(1)

5 (i)	Numbers of men and women should have normal dists; with equal variance; distributions should be independent	$\begin{array}{ll} \hline \text { B1 } & \\ & \\ \text { B1 } & \\ \text { B1 } & \mathbf{3} \end{array}$	Context \& 3 points: 2 of these, B1; 3, B2; 4, B3. [Summary data: 14.73 49.06 $\begin{array}{lll}52.57 \\ 16.24 & 62.18 & 66.07]\end{array}$
(ii)	$\begin{aligned} & \mathrm{H}_{0}: \mu_{M}=\mu_{W} ; \quad \mathrm{H}_{1}: \mu_{M} \neq \mu_{W} \\ & 3992-\frac{221^{2}}{15}+5538-\frac{276^{2}}{17} \quad[\approx 1793] \\ & 1793 /(14+16)=59.766 \\ & (\pm) \frac{221 / 15-276 / 17}{\sqrt{59.766\left(\frac{1}{15}+\frac{1}{17}\right)}}=(-) 0.548 \end{aligned}$ Critical region: $\|t\| \geq 2.042$ Do not reject H_{0}. Insufficient evidence of a difference in mean number of days	B1 M1 A1 A1 M1 A1 $\sqrt{ }$ A1 B1 M1 A1 $\sqrt{ } 10$	Both hypotheses correctly stated Attempt at this expression (see above) Either 1793 or 30 Variance estimate in range [59.7, 59.8] (or $\sqrt{ }$ = 7.73) Standardise, allow wrong (but not missing) 1/n Correct formula, allow $s^{2}\left(\frac{1}{15}+\frac{1}{17}\right)$ or $\left(\frac{s_{1}^{2}}{15}+\frac{s_{2}^{2}}{17}\right)$, allow 14 \& 16 in place of 15,$17 ; 0.548$ or 0.548 2.042 seen Correct method and comparison type, must be t, allow 1-tail; conclusion, in context, not too assertive
(iii)	Eg Samples not indep't so test invalid	B1	Any relevant valid comment, eg "not representative"

6 (i)	$\mathrm{F}(0)=0, \mathrm{~F}(\pi / 2)=1$ Increasing	$\begin{array}{ll} \hline \text { B1 } & \\ \text { B1 } & \mathbf{2} \end{array}$	Consider both end-points Consider F between end-points, can be asserted
(ii)	$\begin{aligned} & \begin{array}{l} \sin ^{4}\left(Q_{1}\right)=1 / 4 \\ \sin \left(Q_{1}\right)=1 / \sqrt{ } 2 \\ Q_{1}=\pi / 4 \end{array} \end{aligned}$	M1 A1 A1 3	Can be implied. Allow decimal approximations Or 0.785(4)
(iii)	$\begin{aligned} \mathrm{G}(y) & =\mathrm{P}(Y \leq y) \quad=\mathrm{P}\left(T \leq \sin ^{-1} y\right) \\ & =\mathrm{F}\left(\sin ^{-1} y\right) \\ & =y^{4} \\ g(y)= & \begin{cases}4 y^{3} & 0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases} \end{aligned}$	M1 A1 A1 M1 A1 5	Ignore other ranges Differentiate $\mathrm{G}(y)$ Function and range stated, allow if range given in G
(iv)	$\begin{array}{r} \int_{0}^{1} \frac{4}{1+2 y} \mathrm{~d} y=[2 \ln (1+2 y)]_{0}^{1} \\ =\mathbf{2} \ln \mathbf{3} \end{array}$	M1 A1 A1 3	Attempt $\int \frac{g(y)}{y^{3}+2 y^{4}} \mathrm{~d} y ; \int_{0}^{1} \frac{4}{1+2 y} \mathrm{~d} y$ Or 2.2, 2.197 or better
$\begin{array}{ll}7 & \text { (i) } \\ & \alpha\end{array}$	$\begin{aligned} & \Phi\left(\frac{8.084-8.592}{0.7534}\right)=\Phi(-0.674)=0.25 \\ & \Phi(0)-\Phi(\text { above })=0.25 \\ & P(8.592 \leq X \leq 9.1)=\text { same by symmetry } \end{aligned}$	$\begin{array}{ll}\text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \\ \text { A1 } & 4\end{array}$	Standardise once, allow $\sqrt{ }$ confusions, ignore sign Obtain 0.25 for one interval For a second interval, justified, eg using $\Phi(0)=0.5$ For a third, justified, eg "by symmetry"
$\begin{aligned} & o r \\ & \beta \end{aligned}$	$\begin{aligned} & \frac{x-8.592}{0.7534}=0.674 \\ & x=8.592 \pm 0.674 \times 0.7534 \\ & \quad=(8.084,9.100) \end{aligned}$	M1A1 A1A1	[from probabilities to ranges] A1 for art 0.674
(ii)	H_{0} : normal distribution fits data All E values $50 / 4=12.5$ $\begin{aligned} & X^{2}=\frac{4.5^{2}+9.5^{2}+1.5^{2}+3.5^{2}}{12.5}=10 \\ & 10>7.8794 \end{aligned}$ Reject H_{0}. Significant evidence that normal distribution is not a good fit.	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \sqrt{7} \end{aligned}$	Not $\mathrm{N}(8.592,0.7534)$. Allow "it's normally distributed" [Yates: 8.56: A0] CV 7.8794 seen Correct method, incl. formula for χ^{2} and comparison, allow wrong v Conclusion, in context, not too assertive
(iv)	$\begin{aligned} & 8.592 \pm 2.576 \times \frac{0.7534}{\sqrt{49}} \\ & (8.315,8.869) \end{aligned}$	M1 A1 A1 3	Allow $\sqrt{ }$ errors, wrong σ or z, allow 50 Correct, including $z=2.576$ or $t_{49}=2.680$, not 50 In range [8.31, 8.32] and in range (8.86, 8.87], even from $50, \quad$ or $(8.306,8.878)$ from t_{49}

4735 Probability \& Statistics 4

1	$\begin{aligned} & \mathrm{M}_{X_{1}+X_{2}}(t)=\left(\mathrm{e}^{\mu_{1} t+\frac{1}{2} \sigma_{1}^{2} t}\right)\left(\mathrm{e}^{\mu_{2} t+\frac{1}{2} \sigma_{2}^{2}}\right) \\ & =\mathrm{e}^{\left(\mu_{1}+\mu_{2}\right) t+\frac{1}{2}\left(\sigma \tau^{2}+\sigma_{2}^{2}\right) x^{2}} \quad o e \\ & X_{1}+X_{2} \sim \text { Normal distribution } \\ & \text { with mean } \mu_{1}+\mu_{2}, \text { variance } \sigma_{1}{ }^{2}+\sigma_{2}{ }^{2} \end{aligned}$	M1 A1 A1 A1A1 $\mathbf{5}$ $\{\mathbf{5}\}$	MGF of sum of independent RVs No suffices:- Allow M1A0A1A0A0
2 (i)	Non-parametric test used when the distribution of the variable in question is unknown	B1 1	
(ii)	$\mathrm{H}_{0}: m_{V-A}=0, \mathrm{H}_{1}: m_{V-A} \neq 0$ where m_{V-A} is the median of the population differences Difference and rank, bottom up $P=65 Q=13$ $T=13$ Critical region: $T \leq 13$ 13 is inside the CR so reject H_{0} and accept that there is sufficient evidence at the 5% significance level that the medians differ Use B(12, 0.5) $\mathrm{P}(\leq 4)=0.1938$ or $\mathrm{CR}=\{0,1,2,10,11,12\}$ >0.025, accept that there is insufficient evidence, etc. CWO	B1 M1 A1 B1 M1 A1 M1 A1 A1 9	Allow $m_{V}=m_{A}$ etc Allow $P>Q$ stated Penalise over-assertive conclusions once only. Or 4 not in CR
(iii)	Wilcoxon test is more powerful than the sign test	$\begin{array}{\|lr\|} \hline \mathrm{B} 1 & \mathbf{1} \\ & \{11\} \\ \hline \end{array}$	Use more information, more likely to reject NH
3(i)	$\begin{aligned} & A+B \\ & =\int_{-\infty}^{0} \mathrm{e}^{2 x} \mathrm{e}^{x t} \mathrm{~d} x+\int_{0}^{\infty} \mathrm{e}^{-2 x} \mathrm{e}^{x t} \mathrm{~d} x \\ & =\left[\frac{1}{2+t} \mathrm{e}^{(2+t) x}\right]_{-\infty}^{0}+\left[-\frac{1}{2-t} \mathrm{e}^{-(2-t) \mathrm{x}}\right]_{0}^{\infty} \\ & =1 /(2+t)+1 /(2-t) \\ & =4 /\left(4-t^{2}\right) \text { AG } \\ & t<-2, A \text { infinite; } t>2, \text { B infinite } \end{aligned}$	$\begin{array}{ll}\text { M1 } & \\ \text { B1 B1 } \\ & \\ \text { A1 } & \\ \text { B1 } & \mathbf{5}\end{array}$	Added, correct limits Correct integrals Allow sensible comments about denom of $\mathrm{M}(t)$
(ii)	$\begin{aligned} \text { Either: } 4 /\left(4-t^{2}\right) & =\left(1-1 / 4 t^{2}\right. \\ & =1+1 / 4 t^{2} \end{aligned}$	$\begin{gathered} \mathrm{M} 1 \\ \mathrm{~A} 1 \end{gathered}$	Expand
	$\begin{aligned} & \text { Or: } \mathrm{M}^{\prime}(t)=8 t /\left(4-t^{2}\right)^{2} \\ & \mathrm{M}^{\prime \prime}(t)=8 /\left(4-t^{2}\right)^{2}+t \times \ldots . \end{aligned}$		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
	$\begin{aligned} & \mathrm{E}(X)=0 \\ & \operatorname{Var}(X)=2 \times 1 / 4-0=1 / 2 \end{aligned}$	$\begin{array}{\|lr\|} \hline \text { M1 } & \\ \text { A1 } & \mathbf{4} \\ & \{9\} \end{array}$	For $\mathrm{M}^{\prime \prime}(0)-\left[\mathrm{M}^{\prime}(0)\right]^{2}$ or equivalent $0.5-0=0.5$

$\begin{aligned} & \mathbf{4} \\ & \text { (i) } \end{aligned}$	$\mathrm{G}(1)=1$ $[a+b=1]$ $\mathrm{G}^{\prime}(1)=-0.7$ $[-a+2 b=-0.7]$ Solve to obtain $a=0.9, b=0.1$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \mathbf{4} \\ \hline \end{array}$	
(ii)	$\begin{aligned} & \mathrm{G}^{\prime \prime}(t)\left[=1.8 / i^{2}+0.2\right] \text { and } \\ & \mathrm{G}^{\prime \prime}(1)+\mathrm{G}^{\prime}(1)-\left[\mathrm{G}^{\prime}(1)^{2}\right] \text { used } \\ & \mathrm{Var}=2 \end{aligned}$		
(iii)	$\left[\left(0.9+0.1 t^{3}\right) / t\right]^{10}$ Method to obtain coefficient of t^{-7} $10 \times 0.9^{9} \times 0.1$ $=\mathbf{0 . 3 8 7} \text { to } 3 \mathrm{SF}$	M1 M1 A1 A1 $\mathbf{4}$ $\{\mathbf{1 0}\}$ 	$\left[\left(a+b t^{2}\right) / t\right]^{\mathrm{i}}$ For both Use of MGF. $10 a^{9} b$
5 (i)		$\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & \mathbf{3} \\ \hline \end{array}$	
(ii)	Consider a particular case to show $\mathrm{P}\left(X_{A}\right.$ and $\left.X_{B}\right) \neq \mathrm{P}\left(X_{A}\right) \mathrm{P}\left(X_{B}\right)$ So X_{A} and X_{B} are not independent		$\begin{aligned} & \mathrm{Or} \mathrm{E}\left(X_{A}\right), \mathrm{E}\left(X_{B}\right) \text { and } \mathrm{E}\left(X_{A} X_{B}\right) \\ & 1.05,1.15,1.09 \\ & \mathrm{E}\left(X_{A}\right) \mathrm{E}\left(X_{B}\right)=1.0275 \text {, ft on wrong } \\ & \mathrm{E}\left(X_{A}\right) \end{aligned}$
(iii)	$\begin{aligned} & \operatorname{Cov}=\mathrm{E}\left(X_{A} X_{B}\right)-\mathrm{E}\left(X_{A}\right) \mathrm{E}\left(X_{B}\right) \\ &=1.09-1.15 \times 1.05=-0.1175 \\ & \operatorname{Var}\left(X_{A}-X_{B}\right)=\operatorname{Var}\left(X_{A}\right)+\operatorname{Var}\left(X_{B}\right)- \\ & 2 \operatorname{Cov}\left(X_{A}, X_{B}\right) \quad=\mathbf{1 . 9 1} \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1ft } & \\ \text { M1 } \\ \text { A1 } & \mathbf{4} \end{array}$	Or from distribution of $X_{A}-X_{B}$ Wrong $\mathrm{E}\left(X_{A}\right)$
(iv)	$\begin{aligned} & \text { Requires } \mathrm{P}\left(X_{A}, X_{B}\right) / \mathrm{P}\left(X_{A}+X_{B}=1\right) \\ & =0.13 /(0.16+0.13) \\ & =13 / 29 \end{aligned}$	$$	

6 (i)	$\begin{aligned} & \int_{a}^{\infty} x \mathrm{e}^{-(x-a)} \mathrm{d} x=\left[-x \mathrm{e}^{-(x-a)}\right]_{a}^{\infty}+\int_{a}^{\infty} \mathrm{e}^{-(x-a)} \mathrm{d} x \\ & =a+\left[-\mathrm{e}^{-(x-a)}\right] \\ & =a+1 \end{aligned}$	$\begin{aligned} & \text { M1B1 } \\ & \text { A1 } \end{aligned}$	Correct limits needed for M1; no, or incorrect, limits allowed for B1
(ii)	$\begin{aligned} \mathrm{E}\left(T_{1}\right) & =(a+1)+2(a+1)-2(a+1)-1 \\ & =a \\ \mathrm{E}\left(T_{2}\right) & =1 / 4(a+1+a+1)+(n-2)(a+1) /[2(n-2)]-1 \\ & =a \end{aligned}$ (So both are unbiased estimators of a)	M1 A1 M1 A1 4	
(iii)	$\begin{aligned} & \sigma^{2}=\operatorname{Var}(X) \\ & \operatorname{Var}\left(T_{1}\right)=(1+4+1+1) \sigma^{2}=7 \sigma^{2} \\ & \begin{aligned} \operatorname{Var}\left(T_{2}\right) & =2 \sigma^{2} / 16+(n-2) \sigma^{2} /\left[2(n-2)^{2}\right] \\ & =n \sigma^{2} /[8(n-2)] \text { oe } \end{aligned} \end{aligned}$ This is clearly $<7 \sigma^{2}$, so T_{2} is more efficient	$\begin{array}{\|lll} \hline \text { M1 } \\ \text { A1 } & \\ \\ \text { B1 } & \\ \text { A1 } & 4 \end{array}$	
(iv)	eg $1 / n\left(X_{1}+X_{2}+\ldots .+X_{n}\right)-1$	$\begin{array}{\|r} \hline \text { B2 } \\ \\ \{\mathbf{1 3}\} \\ \hline \end{array}$	B1 for sample mean
7 (i)	D denotes "The person has the disease" (a) $\mathrm{P}(D)=p, \quad \mathrm{P}\left(D^{\prime}\right)=1-p$, $\mathrm{P}(+\mid D)=0.98, \mathrm{P}\left(+\mid D^{\prime}\right)=0.08$ $\mathrm{P}(+)=p \times 0.98+0.08 \times(1-p)$ $=0.08+0.9 p$ $\begin{aligned} \mathrm{P}(D \mid+) & =\mathrm{P}(+\mid D)(\mathrm{P}(D) / \mathrm{P}(+) \\ & =0.98 p /(0.08+0.9 p \end{aligned}$ $=0.98 p /(0.08+0.9 p)$ (b) $\begin{gathered} \mathrm{P}\left(D^{\prime}\right) \times \mathrm{P}\left(+\mid D^{\prime}\right)+\mathrm{P}(D) \times \mathrm{P}(-\mid D) \\ =0.08-0.06 p \end{gathered}$	$\begin{array}{ll} \text { M1 } & \\ & \\ \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \mathbf{5} \\ \text { A1 } & \mathbf{5} \end{array}$	Use conditional probability
(ii)	$\begin{aligned} & \mathrm{P}(++)=0.98^{2} \times p+0.00^{2} \times(1-p) \\ & \mathrm{P}(\mathrm{D} \mid++) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
(iii)	Expected number with 2 tests: $24000 \times 0.0809=a$ Expected number with 1 test: $24000 \times 0.9191=b$ Expected total cost $=£(10 a+5 b)$ $=\mathbf{£ 1 2 9 7 0 8}$	$\begin{array}{\|lr} \text { M1 } & \\ & \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \mathbf{4} \\ & \{\mathbf{1 1 \}} \\ \hline \end{array}$	$\begin{array}{ll} \text { Or: } & 0.08+0.9 \times 0.001 \text { oe } \\ & \times 5 \times 24000 \\ & +5 \times 24000\left(\text { dep 1t }^{\text {st }}\right. \end{array}$

4736 Decision Mathematics 1

1 (i)	$\begin{array}{\|lllllllll} \hline\left[\begin{array}{lllllllll} 43 & 172 & 536 & 17 & 314 & 462 & 220 & 231 \end{array}\right] \\ 43 & 172 & 536 & 17 & 220 & & & \\ 314 & 462 & & & & & \\ 231 & & & & & & & \\ \hline \end{array}$	$\begin{array}{\|l} \mathrm{M} 1 \\ \mathrm{M} 1 \\ \text { A1 } \end{array}$	First folder correct Second folder correct All correct (cao)	[3]
(ii)	$\begin{array}{llllllll} \hline 536 & 462 & 314 & 231 & 220 & 172 & 43 & 17 \end{array}$	B1	List sorted into decreasing order seen (cao) [Follow through from a decreasing list with no more than 1 error or omission]	
	$\begin{array}{\|llllll} 536 & 462 & & & & \\ 314 & 231 & 220 & 172 & 43 & 17 \\ \hline \end{array}$	$\begin{array}{\|l} \text { M1 } \\ \text { A1 } \\ \hline \end{array}$	First folder correct All correct	[3]
(iii)	$\begin{aligned} & (5000 \div 500)^{2} \times 1.3 \\ & =130 \text { seconds } \end{aligned}$	$\begin{array}{\|l} \hline \text { M1 } \\ \text { A1 } \\ \hline \end{array}$	$10^{2} \times 1.3$ or any equivalent calculation Correct answer, with units	[2]
Total $=8$				

2 (i)	The sum of the orders must be even, (but $1+2+3+3=9$ which is odd).	B1	There must be an even number of odd nodes.	[1]
(ii) a		M1 A1	A graph with five vertices that is neither connected nor simple Vertex orders 1, 1, 2, 2, 4	[2]
b	Because it is not connected	B1	You cannot get from one part of the graph to the other part.	[1]
c	eg	B1	A connected graph with vertex orders $1,1,2,2,4$ (Need not be simple)	[1]
(iii) a	There are five arcs joined to A. Either Ann has met (at least) three of the others or she has met two or fewer, in which case there are at least three that she has not met. In the first case at least three of the arcs joined to A are blue, in the second case at least three of the arcs joined to A are red.	M1 A1	A reasonable attempt (for example, identifying that there are five arcs joined to A) A convincing explanation (this could be a list of the possibilities or a well reasoned explanation)	[2]
b	If any two of Bob, Caz and Del have met one another then B, C and D form a blue triangle with A. Otherwise B, C and D form a red triangle.	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	A reasonable or partial attempt (using A with B, C, D) A convincing explanation (explaining both cases fully)	[2]
Total $=$				

$\begin{aligned} & \hline \mathbf{3} \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & y \geq x \\ & x+y \leq 8 \\ & x>1 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \end{array}$	Line $y=x$ in any form Line $x+y=8$ in any form Line $x=1$ in any form All inequalities correct [Ignore extra inequalities that do not affect the feasible region]	[4]
(ii)	(1, 1), (1, 7), (4, 4)	$\begin{gathered} \mathrm{M} 1 \\ \text { A1 } \end{gathered}$	Any two correct coordinates All three correct [Extra coordinates given $\Rightarrow \mathrm{M} 1, \mathrm{~A} 0$]	[2]
(iii)	$(1,7) \square 23$ $(4,4) \square 20$ At optimum, $x=1$ and $y=7$ Maximum value $=23$	M1 A1 A1	Follow through if possible Testing vertices or using a line of constant profit (may be implied) Accept (1, 7) identified 23 identified	[3]
(iv)	$\begin{aligned} & 2 \times 1+k \times 7 \geq 2 \times 4+k \times 4 \\ & \square k \geq 2 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \end{array}$	$2+7 k$ or implied, or using line of gradient $-\frac{2}{k}$ Greater than or equal to 2 (cao) $[k>2 \Rightarrow \mathrm{M} 1, \mathrm{~A} 0]$	[2]
Total $=11$				

4737 Decision Mathematics 2

3 (i)	For each pairing, the total of the points is 10 . Subtracting 5 from each makes the total 0 . Eg 3 points and 7 points \Rightarrow scores of -2 and +2			$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	Sum of points is 10 So sum of scores is zero A specific example earns M1 only	[2]
(ii)	W scores -1 P has 6 points and W has 4 points			$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & \hline-1 \\ & 6 \text { and } 4 \end{aligned}$	[2]
(iii)	W is dominated by Y $-1<1,-3<-2$ and $1<2$			$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	Y These three comparisons in any form	[2]
(iv)	row min Rovers col max Play-safe for Rovers is P Play-safes for Collies is Y			M1 A1 A1	Determining row minima and column maxima, or equivalent P Y	[3]
(v)	$\begin{aligned} & 2 p-4(1-p)=6 p-4 \\ & Y \text { gives } 1-2 p \\ & Z \text { gives } 3 p \end{aligned}$			$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	$6 p-4$ in simplified form Both $1-2 p$ and $3 p$ in any form	[2]
(vi)	$6 p-4=1-2 p \Rightarrow p=\frac{5}{8}$			B1 M1 A1	Their lines drawn correctly on a reasonable scale Solving the correct pair of equations or using graph correctly $\frac{5}{8}, 0.625$, cao	[3]
(vii)	Add 4 throughout matrix to make all values non negative On this augmented matrix, if Collies play X Rovers expect $6 p_{1}+5 p_{2}$; if Collies play Y Rovers expect $3 p_{1}+p_{2}+5 p_{3}$; and if Collies play Z Rovers expect $7 p_{1}+3 p_{2}+$ $4 p_{3}$ We want to maximise M where M only differs by a constant from m and, for each value of p, m is the minimum expected value.			B1 B1 B1	'Add 4', or new matrix written out or equivalent Relating to columns X, Y and Z respectively. Note: expressions are given in the question. For each value of p we look at the minimum output, then we maximise these minima.	[3]
(viii)	$\begin{aligned} & p_{3}=\frac{3}{8} \\ & M=-\frac{1}{4} \end{aligned}$			$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & \hline \text { cao } \\ & \text { cao } \end{aligned}$	[2]
Total $=19$						

4 (i)	$\begin{aligned} & 8+0+6+5+4 \\ & =23 \text { gallons per minute } \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	$8+0+6+5+4 \text { or } 23$ 23 with units	[2]
(ii)	At most 6 gallons per minute can enter A so there cannot be 7 gallons per minute leaving it At most 7 gallons per minute can leave F so there cannot be 10 gallons per minute entering it.	B1 B1	Maximum into $A=6$ Maximum out of $F=7$	[2]
(iii)	A diagram showing a flow with 12 through E Flow is feasible (upper capacities not exceeded) Nothing flows through A and D Maximum flow through $E=12$ gallons per minute	M1 M1 A1 B1	Assume that blanks mean 0 12	[4]
(iv) $\begin{array}{r}\text { a } \\ \\ \\ \text { b }\end{array}$	If flows through A but not D its route must be $S-A-C-E$, but the flow through E is already a maximum $S-(B)-C-D-F-T$ 1 gallon per minute	B1 M1 A1	A correct explanation Follow through their part (iii) 1	[1]
(v)	Flow $=12+1=13$ gallons per minute Cut through $E T$ and $F T$ or $\{S, A, B, C, D, E, F\}$, $\{T\}$ $=13$ gallons per minute Every cut forms a restriction Every cut \geq every flow \square min cut \geq max flow This cut $=$ this flow so must be min cut and max flow	B1 M1 A1 B1	Identifying this cut in any way Use of max flow - min cut theorem min cut \geq max flow This cut $=$ this flow (or having shown that both are 13)	[4]
(vi)	3 gallons per minute Must flow 6 along $E T$ and 7 along $F T$. Can send 4 into F from D so only need to send 9 through E	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	3 A correct explanation	[3]
(vii)	A diagram showing a flow of 13 without using BE Flow is feasible and only sends 9 through E	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	May imply directions and assume that blanks mean 0	[2]
			Total $=$	20

Grade Thresholds

Advanced GCE Mathematics (3890-2, 7890-2) June 2009 Examination Series

Unit Threshold Marks

7892		Maximum	A	B	C	D	E	U
4721	Raw	72	58	51	44	38	32	0
	UMS	100	80	70	60	50	40	0
4722	Raw	72	56	49	42	35	28	0
	UMS	100	80	70	60	50	40	0
4723	Raw	72	53	46	39	33	27	0
	UMS	100	80	70	60	50	40	0
4724	Raw	72	53	46	39	33	27	0
	UMS	100	80	70	60	50	40	0
4725	Raw	72	49	43	37	32	27	0
	UMS	100	80	70	60	50	40	0
4726	Raw	72	53	46	40	34	28	0
	UMS	100	80	70	60	50	40	0
4727	Raw	72	55	49	43	38	33	0
	UMS	100	80	70	60	50	40	0
4728	Raw	72	62	52	42	33	24	0
	UMS	100	80	70	60	50	40	0
4729	Raw	72	57	48	39	31	23	0
	UMS	100	80	70	60	50	40	0
4730	Raw	72	61	51	41	32	23	0
	UMS	100	80	70	60	50	40	0
4731	Raw	72	55	46	38	30	22	0
	UMS	100	80	70	60	50	40	0
4732	Raw	72	54	47	40	33	27	0
	UMS	100	80	70	60	50	40	0
4733	Raw	72	57	49	41	33	26	0
	UMS	100	80	70	60	50	40	0
4734	Raw	72	55	48	41	34	27	0
	UMS	100	80	70	60	50	40	0
4735	Raw	72	52	45	38	32	26	0
	UMS	100	80	70	60	50	40	0
4736	Raw	72	57	50	44	38	32	0
	UMS	100	80	70	60	50	40	0
4737	Raw	72	52	46	40	34	29	0
	UMS	100	80	70	60	50	40	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
$\mathbf{3 8 9 0}$	300	240	210	180	150	120	0
$\mathbf{3 8 9 1}$	300	240	210	180	150	120	0
$\mathbf{3 8 9 2}$	300	240	210	180	150	120	0
$\mathbf{7 8 9 0}$	600	480	420	360	300	240	0
$\mathbf{7 8 9 1}$	600	480	420	360	300	240	0
$\mathbf{7 8 9 2}$	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	U	Total Number of Candidates
$\mathbf{3 8 9 0}$	37.64	54.75	68.85	80.19	88.46	100	18954
$\mathbf{3 8 9 2}$	58.92	74.42	85.06	91.87	96.04	100	2560
$\mathbf{7 8 9 0}$	47.57	68.42	83.78	93.17	98.15	100	11794
$\mathbf{7 8 9 2}$	60.58	80.66	90.76	95.89	98.72	100	2006

For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/learners/ums results.html
Statistics are correct at the time of publication.

List of abbreviations

Below is a list of commonly used mark scheme abbreviations. The list is not exhaustive.

AEF	Any equivalent form of answer or result is equally acceptable
AG	Answer given (working leading to the result must be valid)
CAO	Correct answer only
ISW	Ignore subsequent working
MR	Misread
SR	Special ruling
SC	Special case
ART	Allow rounding or truncating CWOCorrect working only
SOI	Seen or implied
WWW	Without wrong working
Ft or $\sqrt{ }$	Follow through (allow the A or B mark for work correctly following on from previous incorrect result.)

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England

Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

